722 research outputs found

    Vacuum Polarization of a Charged Massless Scalar Field on Cosmic String Spacetime in the Presence of a Magnetic Field

    Get PDF
    In this paper we consider a charged massless scalar quantum field operator in the spacetime of an idealized cosmic string, i.e., an infinitely long, straight and static cosmic string, which presents a magnetic field confined in a cylindrical tube of finite radius. Three distinct situations are taking into account in this analysis: {\it{i)}} a homogeneous field inside the tube, {\it{ii)}} a magnetic field proportional to 1/r1/r and {\it{iii)}} a cylindrical shell with ÎŽ\delta-function. In these three cases the axis of the infinitely long tube of radius RR coincides with the cosmic string. In order to study the vacuum polarization effects outside the tube, we explicitly calculate the Euclidean Green function associated with this system for the three above situations, considering points in the region outside the tube.Comment: 26 pages, LaTex format, 3 figure

    CMB B-polarization to map the Large-scale Structures of the Universe

    Get PDF
    We explore the possibility of using the B-type polarization of the CMB to map the large-scale structures of the Universe taking advantage of the lens effects on the CMB polarization. The functional relation between the B component with the primordial CMB polarization and the line-of-sight mass distribution is explicited. Noting that a sizeable fraction (at least 40%) of the dark halo population which is responsible of this effect can also be detected in galaxy weak lensing survey, we present statistical quantities that should exhibit a strong sensitivity to this overlapping. We stress that it would be a sound test of the gravitational instability picture, independent on many systematic effects that may hamper lensing detection in CMB or galaxy survey alone. Moreover we estimate the intrinsic cosmic variance of the amplitude of this effect to be less than 8% for a 100, deg^2 survey with a 10' CMB beam. Its measurement would then provide us with an original mean for constraining the cosmological parameters, more particularly, as it turns out, the cosmological constant Lambda.Comment: Latex2e with REVTEX ; 14 pages, 8 figure

    Analysis of two-point statistics of cosmic shear: III. Covariances of shear measures made easy

    Full text link
    In recent years cosmic shear, the weak gravitational lensing effect by the large-scale structure of the Universe, has proven to be one of the observational pillars on which the cosmological concordance model is founded. Several cosmic shear statistics have been developed in order to analyze data from surveys. For the covariances of the prevalent second-order measures we present simple and handy formulae, valid under the assumptions of Gaussian density fluctuations and a simple survey geometry. We also formulate these results in the context of shear tomography, i.e. the inclusion of redshift information, and generalize them to arbitrary data field geometries. We define estimators for the E- and B-mode projected power spectra and show them to be unbiased in the case of Gaussianity and a simple survey geometry. From the covariance of these estimators we demonstrate how to derive covariances of arbitrary combinations of second-order cosmic shear measures. We then recalculate the power spectrum covariance for general survey geometries and examine the bias thereby introduced on the estimators for exemplary configurations. Our results for the covariances are considerably simpler than and analytically shown to be equivalent to the real-space approach presented in the first paper of this series. We find good agreement with other numerical evaluations and confirm the general properties of the covariance matrices. The studies of the specific survey configurations suggest that our simplified covariances may be employed for realistic survey geometries to good approximation.Comment: 15 pages, including 4 figures (Fig. 3 reduced in quality); minor changes, Fig. 4 extended; published in A&

    The cosmological constant and the coincidence problem in a new cosmological interpretation of the universal constant c

    Full text link
    In a recent paper (Vigoureux et al. Int. J. Theor. Phys. 47:928, 2007) it has been suggested that the velocity of light and the expansion of the universe are two aspects of one single concept connecting space and time in the expanding universe. It has then be shown that solving Friedmann's equations with that interpretation (and keeping c = constant) can explain number of unnatural features of the standard cosmology (for example: the flatness problem, the problem of the observed uniformity in term of temperature and density of the cosmological background radiation, the small-scale inhomogeneity problem...) and leads to reconsider the Hubble diagram of distance moduli and redshifts as obtained from recent observations of type Ia supernovae without having to need an accelerating universe. In the present work we examine the problem of the cosmological constant. We show that our model can exactly generate Λ\Lambda (equation of state Pφ=−ρφc2P_\varphi = - \rho_\varphi c^2 with Λ∝R−2\Lambda \propto R^{-2}) contrarily to the standard model which cannot generate it exactly. We also show how it can solve the so-called cosmic coincidence problem

    Nonrelativistic Quantum Analysis of the Charged Particle-Dyon System on a Conical Spacetime

    Full text link
    In this paper we develop the nonrelativistic quantum analysis of the charged particle-dyon system in the spacetime produced by an idealized cosmic string. In order to do that, we assume that the dyon is superposed to the cosmic string. Considering this peculiar configuration {\it conical} monopole harmonics are constructed, which are a generalizations of previous monopole harmonics obtained by Wu and Yang(1976 {\it Nucl. Phys. B} {\bf 107} 365) defined on a conical three-geometry. Bound and scattering wave functions are explicitly derived. As to bound states, we present the energy spectrum of the system, and analyze how the presence of the topological defect modifies obtained result. We also analyze this system admitting the presence of an extra isotropic harmonic potential acting on the particle. We show that the presence of this potential produces significant changes in the energy spectrum of the system.Comment: Paper accepted for publication in Classical and Quantum Gravit

    Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS

    Full text link
    We present a tomographic cosmological weak lensing analysis of the HST COSMOS Survey. Applying our lensing-optimized data reduction, principal component interpolation for the ACS PSF, and improved modelling of charge-transfer inefficiency, we measure a lensing signal which is consistent with pure gravitational modes and no significant shape systematics. We carefully estimate the statistical uncertainty from simulated COSMOS-like fields obtained from ray-tracing through the Millennium Simulation. We test our pipeline on simulated space-based data, recalibrate non-linear power spectrum corrections using the ray-tracing, employ photometric redshifts to reduce potential contamination by intrinsic galaxy alignments, and marginalize over systematic uncertainties. We find that the lensing signal scales with redshift as expected from General Relativity for a concordance LCDM cosmology, including the full cross-correlations between different redshift bins. For a flat LCDM cosmology, we measure sigma_8(Omega_m/0.3)^0.51=0.75+-0.08 from lensing, in perfect agreement with WMAP-5, yielding joint constraints Omega_m=0.266+0.025-0.023, sigma_8=0.802+0.028-0.029 (all 68% conf.). Dropping the assumption of flatness and using HST Key Project and BBN priors only, we find a negative deceleration parameter q_0 at 94.3% conf. from the tomographic lensing analysis, providing independent evidence for the accelerated expansion of the Universe. For a flat wCDM cosmology and prior w in [-2,0], we obtain w<-0.41 (90% conf.). Our dark energy constraints are still relatively weak solely due to the limited area of COSMOS. However, they provide an important demonstration for the usefulness of tomographic weak lensing measurements from space. (abridged)Comment: 26 pages, 25 figures, matches version accepted for publication by Astronomy and Astrophysic

    Cosmological observations in scalar-tensor quintessence

    Full text link
    The framework for considering the astronomical and cosmological observations in the context of scalar-tensor quintessence in which the quintessence field also accounts for a time dependence of the gravitational constant is developed. The constraints arising from nucleosynthesis, the variation of the constant, and the post-Newtonian measurements are taken into account. A simple model of supernovae is presented in order to extract the dependence of their light curves with the gravitational constant; this implies a correction when fitting the luminosity distance. The properties of perturbations as well as CMB anisotropies are also investigated.Comment: 26 pages, 22 figures, to appear in PR
    • 

    corecore