1,141 research outputs found

    A calcareous nannofossil and organic geochemical study of marine palaeoenvironmental changes across the Sinemurian/Pliensbachian (early Jurassic, ~191Ma) in Portugal

    Get PDF
    The Sinemurian/Pliensbachian boundary (~ 191 Ma) is acknowledged as one of the most important steps in the radiation of planktonic organisms, especially primary producers such as dinoflagellates and coccolithophores. To date, there is no detailed study documenting changes in planktonic assemblages related to palaeoceanographic changes across this boundary. The aim of this study is to characterize the palaeoenvironmental changes occurring across the Sinemurian/Pliensbachian boundary at the São Pedro de Moel section (Lusitanian Basin, Portugal) using micropalaeontology and organic geochemistry approaches. Combined calcareous nannofossil assemblage and lipid biomarker data document for a decrease in primary productivity in relation to a major sea-level rise occurring above the boundary. The Lusitanian Basin was particularly restricted during the late Sinemurian with a relatively low sea level, a configuration that led to the recurrent development of black shales. After a sharp sea-level fall, the basin became progressively deeper and more open during the earliest Pliensbachian, subsequently to a major transgression. This sea-level increase seems to have been a global feature and could have been related to the opening of the Hispanic Corridor that connected the Tethys and palaeo-Pacific oceans. The palaeoceanographic and palaeoclimatic changes induced by this opening may have played a role in the diversification of coccolithophores with the first occurrence or colonization of Tethyan waters by placolith-type coccoliths

    The CoRoT target HD 49933: 2- Comparison of theoretical mode amplitudes with observations

    Full text link
    From the seismic data obtained by CoRoT for the star HD 49933 it is possible, as for the Sun, to constrain models of the excitation of acoustic modes by turbulent convection. We compare a stochastic excitation model described in Paper I (arXiv:0910.4027) with the asteroseismology data for HD 49933, a star that is rather metal poor and significantly hotter than the Sun. Using the mode linewidths measured by CoRoT for HD 49933 and the theoretical mode excitation rates computed in Paper I, we derive the expected surface velocity amplitudes of the acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic approximation relating the mode amplitudes in intensity to those in velocity, we derive the expected values of the mode amplitude in intensity. Our amplitude calculations are within 1-sigma error bars of the mode surface velocity spectrum derived with the HARPS spectrograph. The same is found with the mode amplitudes in intensity derived for HD 49933 from the CoRoT data. On the other hand, at high frequency, our calculations significantly depart from the CoRoT and HARPS measurements. We show that assuming a solar metal abundance rather than the actual metal abundance of the star would result in a larger discrepancy with the seismic data. Furthermore, calculations that assume the ``new'' solar chemical mixture are in better agreement with the seismic data than those that assume the ``old'' solar chemical mixture. These results validate, in the case of a star significantly hotter than the Sun and Alpha Cen A, the main assumptions in the model of stochastic excitation. However, the discrepancies seen at high frequency highlight some deficiencies of the modelling, whose origin remains to be understood.Comment: 8 pages, 3 figures (B-W and color), accepted for publication in Astronomy & Astrophysics. Corrected typo in Eq. (4). Updated references. Language improvement

    The underlying physical meaning of the νmaxνc\nu_{\rm max}-\nu_{\rm c} relation

    Full text link
    Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework, scaling laws between asteroseismic quantities and stellar parameters are becoming essential tools to study a rich variety of stars. However, the physical underlying mechanisms of those scaling laws are still poorly known. Our objective is to provide a theoretical basis for the scaling between the frequency of the maximum in the power spectrum (νmax\nu_{\rm max}) of solar-like oscillations and the cut-off frequency (νc\nu_{\rm c}). Using the SoHO GOLF observations together with theoretical considerations, we first confirm that the maximum of the height in oscillation power spectrum is determined by the so-called \emph{plateau} of the damping rates. The physical origin of the plateau can be traced to the destabilizing effect of the Lagrangian perturbation of entropy in the upper-most layers which becomes important when the modal period and the local thermal relaxation time-scale are comparable. Based on this analysis, we then find a linear relation between νmax\nu_{\rm max} and νc\nu_{\rm c}, with a coefficient that depends on the ratio of the Mach number of the exciting turbulence to the third power to the mixing-length parameter.Comment: 8 pages, 11 figures. Accepted in A&

    Role of surface microgeometries on electron escape probability and secondary electron yield of metal surfaces

    Get PDF
    The influence of microgeometries on the Secondary Electron Yield (SEY) of surfaces is investigated. Laser written structures of different aspect ratio (height to width) on a copper surface tuned the SEY of the surface and reduced its value to less than unity. The aspect ratio of microstructures was methodically controlled by varying the laser parameters. The results obtained corroborate a recent theoretical model of SEY reduction as a function of the aspect ratio of microstructures. Nanostructures - which are formed inside the microstructures during the interaction with the laser beam - provided further reduction in SEY comparable to that obtained in the simulation of structures which were coated with an absorptive layer suppressing secondary electron emission

    The universal red-giant oscillation pattern; an automated determination with CoRoT data

    Full text link
    The CoRoT and Kepler satellites have provided thousands of red-giant oscillation spectra. The analysis of these spectra requires efficient methods for identifying all eigenmode parameters. The assumption of new scaling laws allows us to construct a theoretical oscillation pattern. We then obtain a highly precise determination of the large separation by correlating the observed patterns with this reference. We demonstrate that this pattern is universal and are able to unambiguously assign the eigenmode radial orders and angular degrees. This solves one of the current outstanding problems of asteroseismology hence allowing precise theoretical investigation of red-giant interiors.Comment: Accepted in A&A letter

    Periodic mass loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD50064

    Get PDF
    We aim to interpret the photometric and spectroscopic variability of the luminous blue variable supergiant HD\,50064 (V=8.21V=8.21).CoRoT space photometry and follow-up high-resolution spectroscopy, with a time base of 137\,d and 169\,d, respectively, was gathered, analysed and interpreted using standard time series analysis and light curve modelling methods as well as spectral line diagnostics.The space photometry reveals one period of 37\,d, which undergoes a sudden amplitude change with a factor 1.6. The pulsation period is confirmed in the spectroscopy, which additionally reveals metal line radial velocity values differing by 30\sim 30\,km\,s1^{-1} depending on the spectral line and on the epoch. We estimate \teff\sim13\,500\,K, \logg\sim1.5 from the equivalent width of Si lines. The Balmer lines reveal that the star undergoes episodes of changing mass loss on a time scale similar to the changes in the photometric and spectroscopic variability, with an average value of logM˙5\log\dot{\rm M}\simeq-5 (in M_\odot\,yr1^{-1}). We tentatively interpret the 37\,d period as due to a strange mode oscillation.Comment: 4 pages, accepted for publication in Astronomy & Astrophysics Letter

    Spatial distribution of psychotic disorders in an urban area of France: an ecological study

    Get PDF
    Previous analyses of neighbourhood variations of non-affective psychotic disorders (NAPD) have focused mainly on incidence. However, prevalence studies provide important insights on factors associated with disease evolution as well as for healthcare resource allocation. This study aimed to investigate the distribution of prevalent NAPD cases in an urban area in France. The number of cases in each neighbourhood was modelled as a function of potential confounders and ecological variables, namely: migrant density, economic deprivation and social fragmentation. This was modelled using statistical models of increasing complexity: frequentist models (using Poisson and negative binomial regressions), and several Bayesian models. For each model, assumptions validity were checked and compared as to how this fitted to the data, in order to test for possible spatial variation in prevalence. Data showed significant overdispersion (invalidating the Poisson regression model) and residual autocorrelation (suggesting the need to use Bayesian models). The best Bayesian model was Leroux's model (i.e. a model with both strong correlation between neighbouring areas and weaker correlation between areas further apart), with economic deprivation as an explanatory variable (OR = 1.13, 95% CI [1.02-1.25]). In comparison with frequentist methods, the Bayesian model showed a better fit. The number of cases showed non-random spatial distribution and was linked to economic deprivation

    Short-lived spots in solar-like stars as observed by CoRoT

    Full text link
    Context. CoRoT light curves have an unprecedented photometric quality, having simultaneously a high signal-to-noise ratio, a long time span and a nearly continuous duty-cycle. Aims. We analyse the light-curves of four bright targets observed in the seismology field and study short-lived small spots in solar-like stars. Methods. We present a simple spot modeling by iterative analysis. Its ability to extract relevant parameters is ensured by implementing relaxation steps to avoid convergence to local minima of the sum of the residuals between observations and modeling. The use of Monte-Carlo simulations allows us to estimate the performance of the fits. Results. Our starspot modeling gives a representation of the spots on these stars in agreement with other well tested methods. Within this framework, parameters such as rigid-body rotation and spot lifetimes seem to be precisely determined. Then, the lifetime/rotation period ratios are in the range 0.5 - 2, and there is clear evidence for differential rotation.Comment: 11 pages Accepted in A&

    Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler

    Full text link
    We report for the first time a parametric fit to the pattern of the \ell = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes, we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period \'echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of \ell = 3 modes, of \ell = 2 mixed modes, for the mode widths and amplitudes, and for the \ell = 1 rotational splittings. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.Comment: Accepted in A&
    corecore