1,207 research outputs found

    Technical and economic comparison of grid supportive vanadium redox flow batteries for primary control reserve and community electricity storage in Germany

    Get PDF
    Aquesta és una còpia de la versió author’s final draft d'un article publicat a la revista [International journal of energy research]. URL d'aquest document a UPCommons E-prints: http://hdl.handle.net/2117/127058Primary control reserve and maximising self-consumption are currently two of the main applications for large-scale battery storage systems. Although being currently the most profitable application for large-scale batteries in Germany, storage systems applying primary control reserve have not been implemented in a grid supportive manner in distribution grids yet. Despite a current unfavourable regulatory framework and reimbursement scheme for community electricity storages in Germany, they are potentially more profitable than residential storages, which is mainly due to their economy of scale, and thus they may become the major large scale battery application in the future. The two applications: primary control reserve and maximising self-consumption, are combined with a grid supportive behaviour by providing reactive power control and/or peak shaving and are fitted to a vanadium redox flow battery prototype, which is installed in a distribution grid in southern Germany. Based on measured data from the prototype, two battery models for two different time resolutions (1s, 1min) are presented in detail along with their respective operation models. The operation strategy model for primary control reserve comprises the so-called degrees of freedom used to reduce the energy needed to recharge the battery. The operation strategy to maximise self-consumption is based on a persistence forecast. The model for the operation strategy for a grid supportive primary control reserve was validated in a field test revealing a relative error of 2.5 % between the simulated and measured state of charge of the battery for a multi-week time period. The technical assessment of both applications shows that the use of the degrees of freedom can reduce the energy to recharge the battery by 20 %; and in the case of self-consumption, the curtailment losses can be kept under 1 %. The economic assessment, however, indicates that even for the most promising primary control reserve case, the investment costs of vanadium redox flow batteries must be reduced by at least 30 % in order to break even. Finally, the encouraging key finding is that the negative impact of a grid supportive behaviour, additionally to its primary purpose, is less than 1 % of the revenues. This may encourage distribution grid and battery operators to consider the integration of large scale batteries in distribution grids as part of the solution of a rising share of a decentralised renewable energy generation.Postprint (author's final draft

    Can big data and random forests improve avalanche runout estimation compared to simple linear regression?

    Get PDF
    Accurate prediction of snow avalanche runout-distances in a deterministic sense remains a challenge due to the complexity of all the physical properties involved. Therefore, in many locations including Norway, it has been common practice to define the runout distance using the angle from the starting point to the end of the runout zone (α-angle). We use a large dataset of avalanche events from Switzerland (N = 18,737) acquired using optical satellites to calculate the α-angle for each avalanche. The α-angles in our dataset are normally distributed with a mean of 33◦ and a standard deviation of 6.1◦, which provides additional understanding and insights into α-angle distribution. Using a feature importance module in the Random Forest framework, we found the most important topographic parameter for predicting α-angles to be the average gradient from the release area to the β-point. Despite the large dataset and a modern machine learning (ML) method, we found the simple linear regression model to yield a higher performance than our ML attempts. This means that it is better to use a simple linear regression in an operational context

    Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli

    Get PDF
    The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes

    Treatment of gastrointestinal hemorrhage

    Get PDF
    Background: We assessed the value of selective arteriography in the diagnosis and management of acute gastrointestinal hemorrhage. Methods: We reviewed the records of 107 consecutive patients who had gastrointestinal hemorrhage and underwent selective arteriography between January 1992 and October 2003: 10 had upper gastrointestinal bleeding, 79 had lower gastrointestinal bleeding, and 18 had varicose bleeding with portal hypertension. Selective embolization was attempted in 15 patients to obtain hemostasis. Angiographic findings were reviewed and prospective reports were compared with the final diagnosis and outcome. Results: Of 129 angiographic studies, 36 correctly revealed the bleeding site and 93 were negative. Extravasation was seen in 24 cases at the level of stomach (n = 2), duodenum (n = 1), small bowel (n = 5), or colon (n = 16). Indirect signs of bleeding sources were identified in 12 patients (stomach in one, small bowel in four, large bowel in four, liver in three). Transcatheter embolization induced definitive hemostasis in 11 of 15 patients (73%), namely in the stomach (n = 2), small bowel (n = 3), colon (n = 7), and liver (n = 3). Three patients required surgery after embolization. Conclusion: Abdominal arteriography may localize gastrointestinal bleeding sources in approximately one-third of cases. Selective embolization may provide definitive hemostasis in most instance

    Transition to turbulence in Hunt's flow in a moderate magnetic field

    Get PDF
    Pressure-driven magnetohydrodynamic duct flow in a transverse uniform magnetic field is studied by direct numerical simulation. The electric boundary conditions correspond to Hunt's flow with perfectly insulating walls parallel to the magnetic field (sidewalls) and perfectly conducting walls perpendicular to the magnetic field (Hartmann walls). The velocity distribution exhibits strong jets at the sidewalls, which are susceptible to instability even at low Reynolds numbers Re. We explore the onset of time-dependent flow and transition to states with evolved turbulence for a moderate Hartmann number Ha=100Ha = 100 . At low Re time-dependence appears in the form of elongated Ting-Walker vortices at the sidewalls of the duct, which, upon increasing Re, develop into more complex structures with higher energy and then the sidewall jets partially detach from the walls. At high values of Re jet detachments disappear and the flow consists of two turbulent jets and nearly laminar core. It is also demonstrated that, there is a range of Re, where Hunt's flow exhibits a pronounced hysteresis behavior, so that different unsteady states can be observed for the same flow parameters. In this range multiple states may develop and co-exist, depending on the initial conditions
    corecore