902 research outputs found

    Justice Center Research Overview; Vol. 3

    Get PDF
    An overview of key research findings nationally and in Alaska on the relationships between victims and suspects in sexual assault cases

    Emergence of common lambsquarters (Chenopodium album L.) is influenced by the landscape position in which seeds developed

    Get PDF
    In a 2-yr field study, we evaluated the emergence and early growth of Chenopodium album L. (common lambsquarters) seedlings as affected by the landscape position in which the seeds (i) developed, (ii) overwintered, and (iii) were planted. Results indicated that a higher proportion of seeds originating from lower slope positions emerged compared with seeds originating from the backslope or upper slope. The timing of emergence was the same for all seed source locations. There was no influence of overwintering location on weed emergence. Regardless of the seed source, we observed faster emergence and growth of C. album planted in the lower slope, where soil conditions were more conducive to growth. These experiments will support the development of new strategies and decision aids to improve weed management

    A computationally efficient inorganic atmospheric aerosol phase equilibrium model (UHAERO)

    Get PDF
    A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model also computes deliquescence and crystallization behavior without any a priori specification of the relative humidities of deliquescence or crystallization. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition

    A new inorganic atmospheric aerosol phase equilibrium model (UHAERO)

    Get PDF
    A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model computes deliquescence behavior without any a priori specification of the relative humidities of deliquescence. Also included in the model is a formulation based on classical theory of nucleation kinetics that predicts crystallization behavior. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition

    Cuphea Yields in Iowa, 2002

    Get PDF
    Cuphea is a potential source of lauric and capric acids, which are medium-chain-length fatty acids. They are used to manufacture various products such as detergents (lauric) and high quality lubricants (capric). The fatty acids are contained in oils that are produced and stored in cuphea seeds. Currently, all of the lauric acid used for detergents is derived from imported palm and coconut oils. There is no domestic source of this fatty acid, which is a dilemma that U.S. industries, such as Proctor & Gamble and ADM, would like to resolve

    Probing neutrino mass with multilepton production at the Tevatron in the simplest R-parity violation model

    Get PDF
    We analyze the production of multileptons in the simplest supergravity model with bilinear violation of R parity at the Fermilab Tevatron. Despite the small R-parity violating couplings needed to generate the neutrino masses indicated by current atmospheric neutrino data, the lightest supersymmetric particle is unstable and can decay inside the detector. This leads to a phenomenology quite distinct from that of the R-parity conserving scenario. We quantify by how much the supersymmetric multilepton signals differ from the R-parity conserving expectations, displaying our results in the m0⊗m1/2m_0 \otimes m_{1/2} plane. We show that the presence of bilinear R-parity violating interactions enhances the supersymmetric multilepton signals over most of the parameter space, specially at moderate and large m0m_0.Comment: 26 pages, 23 figures. Revised version with some results corrected and references added. Conclusions remain the sam

    Phase separation transition in liquids and polymers induced by electric field gradients

    Full text link
    Spatially uniform electric fields have been used to induce instabilities in liquids and polymers, and to orient and deform ordered phases of block-copolymers. Here we discuss the demixing phase transition occurring in liquid mixtures when they are subject to spatially nonuniform fields. Above the critical value of potential, a phase-separation transition occurs, and two coexisting phases appear separated by a sharp interface. Analytical and numerical composition profiles are given, and the interface location as a function of charge or voltage is found. The possible influence of demixing on the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja
    • …
    corecore