15,391 research outputs found
Nuclear effects in electron reactions and their impact on neutrino processes
We suggest that superscaling in electroweak interactions with nuclei, namely
the observation that the reduced electron-nucleus cross sections are to a large
degree independent of the momentum transfer and of the nuclear species, can be
used as a tool to obtain precise predictions for neutrino-nucleus cross
sections in both charged and neutral current-induced processes.Comment: 11 pages, 7 figures, proceedings of NUINT09, 6th International
Workshop of Neutrino-Nucleus Interactions in the Few-Gev Region, Sitges
(Spain), May 18-22, 200
Neutrino Interactions Importance for Nuclear Physics
We review the general interplay between Nuclear Physics and neutrino-nucleus
cross sections at intermediate and high energies. The effects of different
reaction mechanisms over the neutrino observables are illustrated with examples
in calculations using several nuclear models and ingredients.Comment: To appear in the proceedings of 6th International Workshop on
Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt09), Sitges, Spain,
18 - 22 May 200
Strings Near a Rindler Or Black Hole Horizon
Orbifold techniques are used to study bosonic, type II and heterotic strings
in Rindler space at integer multiples N of the Rindler temperature, and near a
black hole horizon at integer multiples of the Hawking temperature, extending
earlier results of Dabholkar. It is argued that a Hagedorn transition occurs
nears the horizon for all N>1.Comment: 13 pages, harvmac, (references added
P-P Total Cross Sections at VHE from Accelerator Data
Comparison of P-P total cross-sections estimations at very high energies -
from accelerators and cosmic rays - shows a disagreement amounting to more than
10 %, a discrepancy which is beyond statistical errors. Here we use a
phenomenological model based on the Multiple-Diffraction approach to
successfully describe data at accelerator energies. The predictions of the
model are compared with data On the basis of regression analysis we determine
confident error bands, analyzing the sensitivity of our predictions to the
employed data for extrapolation. : using data at 546 and 1.8 TeV, our
extrapolations for p-p total cross-sections are only compatible with the Akeno
cosmic ray data, predicting a slower rise with energy than other cosmic ray
results and other extrapolation methods. We discuss our results within the
context of constraints in the light of future accelerator and cosmic ray
experimental results.Comment: 26 pages aqnd 11 figure
Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam
During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks
for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton
beam bunches, separated by 100 ns. This tightly bunched beam structure allows a
very accurate time of flight measurement of neutrinos from CERN to LNGS on an
event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing
synchronization have been substantially improved for this campaign, taking
ad-vantage of additional independent GPS receivers, both at CERN and LNGS as
well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS.
The ICARUS-T600 detector has collected 25 beam-associated events; the
corresponding time of flight has been accurately evaluated, using all different
time synchronization paths. The measured neutrino time of flight is compatible
with the arrival of all events with speed equivalent to the one of light: the
difference between the expected value based on the speed of light and the
measured value is tof_c - tof_nu = (0.10 \pm 0.67stat. \pm 2.39syst.) ns. This
result is in agreement with the value previously reported by the ICARUS
collaboration, tof_c - tof_nu = (0.3 \pm 4.9stat. \pm 9.0syst.) ns, but with
improved statistical and systematic errors.Comment: 21 pages, 13 figures, 1 tabl
Recommended from our members
Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios
The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air–sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961–2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001–2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air–sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070–2099 period compared to 1961–1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in General Circulation Models, has the largest impact on the evolution of the Mediterranean water masses, followed by the choice of the socio-economic scenario. The choice of river runoff and atmospheric forcing both have a smaller impact. The state of the MTHC during the historical period is found to have a large influence on the transfer of surface anomalies toward depth. Besides, subsurface currents are substantially modified in the Ionian Sea and the Balearic region. Finally, the response of thermosteric sea level ranges from +34 to +49 cm (2070–2099 vs. 1961–1990), mainly depending on the Atlantic forcing
A Comprehensive Analysis of Choroideremia: From Genetic Characterization to Clinical Practice.
Choroideremia (CHM) is a rare X-linked disease leading to progressive retinal degeneration resulting in blindness. The disorder is caused by mutations in the CHM gene encoding REP-1 protein, an essential component of the Rab geranylgeranyltransferase (GGTase) complex. In the present study, we evaluated a multi-technique analysis algorithm to describe the mutational spectrum identified in a large cohort of cases and further correlate CHM variants with phenotypic characteristics and biochemical defects of choroideremia patients. Molecular genetic testing led to the characterization of 36 out of 45 unrelated CHM families (80%), allowing the clinical reclassification of four CHM families. Haplotype reconstruction showed independent origins for the recurrent p.Arg293* and p.Lys178Argfs*5 mutations, suggesting the presence of hotspots in CHM, as well as the identification of two different unrelated events involving exon 9 deletion. No certain genotype-phenotype correlation could be established. Furthermore, all the patients´ fibroblasts analyzed presented significantly increased levels of unprenylated Rabs proteins compared to control cells; however, this was not related to the genotype. This research demonstrates the major potential of the algorithm proposed for diagnosis. Our data enhance the importance of establish a differential diagnosis with other retinal dystrophies, supporting the idea of an underestimated prevalence of choroideremia. Moreover, they suggested that the severity of the disorder cannot be exclusively explained by the genotype
Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs
Non-conding RNAs play a key role in the post-transcriptional regulation of
mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact
with their target RNAs through protein-mediated, sequence-specific binding,
giving rise to extended and highly heterogeneous miRNA-RNA interaction
networks. Within such networks, competition to bind miRNAs can generate an
effective positive coupling between their targets. Competing endogenous RNAs
(ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk.
Albeit potentially weak, ceRNA interactions can occur both dynamically,
affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA
networks as a whole can be implicated in the composition of the cell's
proteome. Many features of ceRNA interactions, including the conditions under
which they become significant, can be unraveled by mathematical and in silico
models. We review the understanding of the ceRNA effect obtained within such
frameworks, focusing on the methods employed to quantify it, its role in the
processing of gene expression noise, and how network topology can determine its
reach.Comment: review article, 29 pages, 7 figure
Malnutrition Has No Effect on the Timing of Human Tooth Formation
The effect of nutrition on the timing of human tooth formation is poorly understood. Delays and advancements in dental maturation have all been reported as well as no effect. We investigated the effect of severe malnutrition on the timing of human tooth formation in a large representative sample of North Sudanese children. The sample (1102 males, 1013 females) consisted of stratified randomly selected healthy individuals in Khartoum, Sudan, aged 2-22 years using a cross-sectional design following the STROBE statement. Nutritional status was defined using WHO criteria of height and weight. Body mass index Z-scores and height for age Z-scores of ≤-2 (cut-off) were used to identify the malnourished group (N = 474) while the normal was defined by Z-scores of ≥0 (N = 799). Clinical and radiographic examination of individuals, with known ages of birth was performed including height and weight measurements. Mandibular left permanent teeth were assessed using eight crown and seven root established tooth formation stages. Mean age at entry and mean age within tooth stages were calculated for each available tooth stage in each group and compared using a t-test. Results show the mean age at entry and mean age within tooth stages were not significantly different between groups affected by severe malnutrition and normal children (p>0.05). This remarkable finding was evident across the span of dental development. We demonstrate that there is little measurable effect of sustained malnutrition on the average timing of tooth formation. This noteworthy finding supports the notion that teeth have substantial biological stability and are insulated from extreme nutritional conditions compared to other maturing body systems
- …
