1,731 research outputs found

    Phylogeography of the Bradyrhizobium spp. associated with peanut, Arachis hypogaea: Fellow travellers or new associations?

    Get PDF
    International audienceLegume plants have colonized almost all terrestrial biotopes. Their ecological success is partly due to the selective advantage provided by their symbiotic association with nitrogen-fixing bacteria called rhizobia, which allow legumes to thrive on marginal lands and nitrogen depleted soils where non-symbiotic plants cannot grow. Additionally, their symbiotic capacities result in a high protein content in their aerial parts and seeds. This interesting nutritional value has led to the domestication and agricultural exploitation of several legumes grown for seeds and/or fodder for human and domestic animal consumption. Several cultivated legume species are thus grown far beyond their natural geographic range. Other legume species have become invasives, spreading into new habitats. The cultivation and establishment of legume species outside of their original range requires either that they are introduced or cultivated along with their original symbiotic partner or that they find an efficient symbiotic partner in their introduced habitat. The peanut, Arachis hypogaea, a native of South America, is now cultivated throughout the world. This species forms root nodules with Bradyrhizobium, but it is unclear whether these came with the seeds from their native range or were acquired locally. Here we propose to investigate the phylogeography of Bradyrhizobium spp. associated with a number of different wild and cultivated legume species from a range of geographical areas, including numerous strains isolated from peanut roots across the areas of peanut cultivation. This will allow us to address the question of whether introduced/cultivated peanuts associate with bacteria from their original geographic range, i.e., were introduced together with their original bacterial symbionts, or whether they acquired their current associations de novo from the bacterial community within the area of introduction. We will base the phylogenetic analysis on sequence data from both housekeeping and core genes and a symbiotic gene (nif). Differences between the phylogenetic signal of symbiotic and non-symbiotic genes could resultfrom horizontal transfer of symbiosis capacity. Thus this study will also allow us to elucidate the processes by which this symbiotic association has evolved within this group of Bradyrhizobium spp

    Pterodactyl: Trade Study for an Integrated Control System Design of a Mechanically Deployable Entry Vehicle

    Get PDF
    This paper presents the trade study method used to evaluate and downselect from a set of guidance and control (G&C) system designs for a mechanically Deployable Entry Vehicle (DEV). The Pterodactyl project was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable Entry and Placement Technology (ADEPT) vehicle, which was successfully developed by NASAs Space Technology Mission Directorate (STMD) prior to this study. The Pterodactyl project designed three different entry G&C systems for precision targeting. This paper details the Figures of Merit (FOMs) and metrics used during the course of the projects G&C system assessment. The relative importance of the FOMs was determined from the Analytic Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the projects input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to pursue in the next design phase

    Predicting the Refractive Index of Tissue Models Using Light Scattering Spectroscopy

    Get PDF
    This is the final version. Available on open access from SAGE Publications via the DOI in this recordData availability: All data needed to evaluate the conclusions in the paper are present herein. Additional data related to this paper may be requested from the corresponding author.In this work, we report the application of Raman microspectroscopy for analysis of the refractive index of a range of tissue phantoms. Using both a custom-developed setup with visible laser source and a commercial micro-spectrometer with near infrared laser, we measured the Raman spectra of gelatin hydrogels at various concentrations. By building a calibration curve from measured refractometry data and Raman scattering intensity for different vibrational modes of the hydrogel, we were able to predict the refractiveindices of the gels from their Raman spectra.This work highlights the importance of a correlative approach through Brillouin-Raman microspectroscopy for the mechano-chemical analysis of biologically relevant samples.Engineering and Physical Sciences Research Council (EPSRC)Cancer Research U

    Methylation patterns in serum DNA for early identification of disseminated breast cancer

    Get PDF
    BACKGROUND: Monitoring treatment and early detection of fatal breast cancer (BC) remains a major unmet need. Aberrant circulating DNA methylation (DNAme) patterns are likely to provide a highly specific cancer signal. We hypothesized that cell-free DNAme markers could indicate disseminated breast cancer, even in the presence of substantial quantities of background DNA. METHODS: We used reduced representation bisulfite sequencing (RRBS) of 31 tissues and established serum assays based on ultra-high coverage bisulfite sequencing in two independent prospective serum sets (n = 110). The clinical use of one specific region, EFC#93, was validated in 419 patients (in both pre- and post-adjuvant chemotherapy samples) from SUCCESS (Simultaneous Study of Gemcitabine-Docetaxel Combination adjuvant treatment, as well as Extended Bisphosphonate and Surveillance-Trial) and 925 women (pre-diagnosis) from the UKCTOCS (UK Collaborative Trial of Ovarian Cancer Screening) population cohort, with overall survival and occurrence of incident breast cancer (which will or will not lead to death), respectively, as primary endpoints. RESULTS: A total of 18 BC specific DNAme patterns were discovered in tissue, of which the top six were further tested in serum. The best candidate, EFC#93, was validated for clinical use. EFC#93 was an independent poor prognostic marker in pre-chemotherapy samples (hazard ratio [HR] for death = 7.689) and superior to circulating tumor cells (CTCs) (HR for death = 5.681). More than 70% of patients with both CTCs and EFC#93 serum DNAme positivity in their pre-chemotherapy samples relapsed within five years. EFC#93-positive disseminated disease in post-chemotherapy samples seems to respond to anti-hormonal treatment. The presence of EFC#93 serum DNAme identified 42.9% and 25% of women who were diagnosed with a fatal BC within 3–6 and 6–12 months of sample donation, respectively, with a specificity of 88%. The sensitivity with respect to detecting fatal BC was ~ 4-fold higher compared to non-fatal BC. CONCLUSIONS: Detection of EFC#93 serum DNAme patterns offers a new tool for early diagnosis and management of disseminated breast cancers. Clinical trials are required to assess whether EFC#93-positive women in the absence of radiological detectable breast cancers will benefit from anti-hormonal treatment before the breast lesions become clinically apparent

    Pterodactyl: Trade Study for an Integrated Control System Design of a Mechanically Deployed Entry Vehicle

    Get PDF
    This paper presents a trade study method used to evaluate and down-select from a set of guidance and control (G&C) system designs for a mechanically deployable entry vehicle (DEV). The Pterodactyl project, funded by NASA's Space Technology Mission Directorate (STMD), was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable, Entry Placement Technology (ADEPT) vehicle, which was successfully developed by STMD prior to this study. The Pterodactyl project designed three different G&C systems for the vehicle's precise entry, which this paper briefly discusses. This paper details the Figures of Merit (FOMs) and metrics used during the course of the project's G&C system assessment. Each G&C configuration was traded against the three FOMs categories: G&C system performance, affordability and life cycle costs, and safety and mission success. The relative importance of the FOMs was determined from the Analytical Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the project's input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to continue pursuing in the next prototyping and testing phase

    DNA methylation markers for early detection of women's cancer: promise and challenges

    Get PDF
    Breast, ovarian and endometrial cancers cause significant morbidity and mortality. Despite the presence of existing screening, diagnostic and treatment modalities, they continue to pose considerable unsolved challenges. Overdiagnosis is a growing problem in breast cancer screening and neither screening nor early diagnosis of ovarian or endometrial cancer is currently possible. Moreover, treatment of the diversity of these cancers presenting in the clinic is not sufficiently personalized at present. Recent technological advances, including reduced representation bisulfite sequencing, methylation arrays, digital PCR, next-generation sequencing and advanced statistical data analysis, enable the analysis of methylation patterns in cell-free tumor DNA in serum/plasma. Ongoing work is bringing these methods together for the analysis of samples from large clinical trials, which have been collected well in advance of cancer diagnosis. These efforts pave the way for the development of a noninvasive method that would enable us to overcome existing challenges to personalized medicine

    Tumor protein D52 (TPD52): A novel B-cell/plasma-cell molecule with unique expression pattern and Ca2+-dependent association with annexin VI

    Get PDF
    We generated a murine monoclonal antibody (B28p) detecting an antigenic determinant shared by the immunoglobulin superfamily receptor translocation-associated 1 (IRTA1) receptor (the immunogen used to raise B28p) and an unrelated 28-kDa protein that was subsequently subjected to extensive characterization. The expression of the 28-kDa protein in normal lymphohematopoietic tissues was restricted to B cells and plasma cells and clearly differed from that expected for IRTA1 (selectively expressed by mucosa-associated lymphoid tissue [MALT] marginal zone B cells). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE)/mass-spectrometry analysis identified the 28-kDa protein as human tumor protein D52 (TPD52), whose expression had been previously described only in normal and neoplastic epithelia. Specific B28p reactivity with TPD52 was confirmed by immunostaining/immunoblotting of TPD52-transfected cells. TPD52 expression pattern in normal and neoplastic B cells was unique. In fact, unlike other B-cell molecules (paired box 5 [PAX5], CD19, CD79a, CD20, CD22), which are down-regulated during differentiation from B cells to plasma cells, TPD52 expression reached its maximum levels at the plasma cell stage. In the Thiel myeloma cell line, TPD52 bound to annexin VI in a Ca2+-dependent manner, suggesting that these molecules may act in concert to regulate secretory processes in plasma cells, similarly to what was observed in pancreatic acinar cells. Finally, the anti-TPD52 monoclonal antibody served as a valuable tool for the diagnosis of B-cell malignancies
    • …
    corecore