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Abstract

Background: Monitoring treatment and early detection of fatal breast cancer (BC) remains a major unmet need.
Aberrant circulating DNA methylation (DNAme) patterns are likely to provide a highly specific cancer signal. We
hypothesized that cell-free DNAme markers could indicate disseminated breast cancer, even in the presence of
substantial quantities of background DNA.

Methods: We used reduced representation bisulfite sequencing (RRBS) of 31 tissues and established serum assays
based on ultra-high coverage bisulfite sequencing in two independent prospective serum sets (n = 110). The clinical
use of one specific region, EFC#93, was validated in 419 patients (in both pre- and post-adjuvant chemotherapy
samples) from SUCCESS (Simultaneous Study of Gemcitabine-Docetaxel Combination adjuvant treatment, as well as
Extended Bisphosphonate and Surveillance-Trial) and 925 women (pre-diagnosis) from the UKCTOCS (UK Collaborative
Trial of Ovarian Cancer Screening) population cohort, with overall survival and occurrence of incident breast cancer
(which will or will not lead to death), respectively, as primary endpoints.

Results: A total of 18 BC specific DNAme patterns were discovered in tissue, of which the top six were further tested in
serum. The best candidate, EFC#93, was validated for clinical use. EFC#93 was an independent poor prognostic marker in
pre-chemotherapy samples (hazard ratio [HR] for death = 7.689) and superior to circulating tumor cells (CTCs)
(HR for death = 5.681). More than 70% of patients with both CTCs and EFC#93 serum DNAme positivity in
their pre-chemotherapy samples relapsed within five years. EFC#93-positive disseminated disease in post-chemotherapy
samples seems to respond to anti-hormonal treatment. The presence of EFC#93 serum DNAme identified 42.9% and 25%
of women who were diagnosed with a fatal BC within 3–6 and 6–12 months of sample donation, respectively, with a
specificity of 88%. The sensitivity with respect to detecting fatal BC was ~ 4-fold higher compared to non-fatal BC.

Conclusions: Detection of EFC#93 serum DNAme patterns offers a new tool for early diagnosis and management of
disseminated breast cancers. Clinical trials are required to assess whether EFC#93-positive women in the absence of
radiological detectable breast cancers will benefit from anti-hormonal treatment before the breast lesions become
clinically apparent.
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Background
Breast cancer (BC) is by far the most frequently occur-
ring cancer in women. Every year 522,000 women die
from BC [1].
Mammography is used as a screening tool for early

diagnosis but has its limitations due to over-diagnosis
and a modest impact on mortality [2]. Recent evidence
demonstrates that dissemination might occur during the
very early stages of tumor evolution and before clinical
manifestation of the cancer in the breast [3]. The
analyses of circulating markers in order to identify
women with disseminated disease before diagnosis have
not been successful [4].
Numerous studies have demonstrated that patients

with disseminated tumor cells in the bone marrow [5–7]
or circulating tumor cells (CTCs) [8–12] have an inferior
prognosis. The immunocytochemical detection of CTCs
is reliant upon the isolation of intact cells.
Adjuvant systemic treatment has reduced BC mortality

over the last two to three decades [13]. The current
strategy guiding administration of adjuvant systemic
treatment is reliant upon primary tumor characteristics.
However, systemic relapse and subsequent death are
caused by disseminated disease whose biological proper-
ties may be very different to those comprising the
primary tumor [14].
Recently, markers based on DNA shed from tumor

cells have shown great promise in monitoring treatment
response and predicting prognosis [15–19]. However,
efforts to characterize the cancer genome have shown
that only a few genes are frequently mutated in cancer
and the site of mutation per gene differs across tumors
[20]. A further limitation is that current technology only
allows for the detection of a mutant allele fraction of
0.1% [15, 21].
Over the last decade, DNA methylation (DNAme) has

been shown to be a hallmark of cancer [22] and occurs
very early in BC development [23]. DNAme is centered
around specific regions (CpG islands) [22] and is chem-
ically and biologically stable. This enables the develop-
ment of early detection tools and personalized
treatment, based upon the analysis of cell-free DNA
contained within serum or plasma [24–29]. However,
two major challenges have to be overcome: (1) the very
low abundance of cancer-DNA in the blood; and (2) the
high level of “background DNA” shed from white blood
cells (WBC) [30] in banked samples.
To date, virtually all research work has been carried

out in relatively small studies and focused on the
analyses of cell-free DNAme in metastatic/relapsed
breast cancers using markers from previously published
studies [31]. In our study we: (1) used an epigenome-
wide approach to identify new markers which indicate
disseminated breast cancer; (2) analyzed the top marker

in 419 primary non-metastatic patients before (i.e.
immediately after resection of the primary breast cancer)
and after adjuvant chemotherapy; and, most importantly
(3) analyzed the marker in 925 healthy women who ei-
ther remained healthy or developed fatal or non-fatal
BC within the first three years after serum sample
donation.

Methods
Patients and sample collection
We used a total of 31 tissues and 1869 serum samples
(Fig. 1). In Phase 1, we analyzed breast cancer tissue and
WBCs in order to identify breast cancer specific DNAme
markers. In Phase 2, we established serum DNAme assays
using serum sets 1 and 2, collected from women attending
hospitals in London, Munich, and Prague where they were
invited and consented. Blood samples (20–40 mL) were ob-
tained (in VACUETTE® Z Serum Sep Clot Activator tubes),
centrifuged at 3000 rpm for 10 min, and serum collected
and stored at – 80 °C. Finally, Phase 3 was initiated to valid-
ate the top marker performance by using serum samples
from two large clinical studies: (1) from 419 patients re-
cruited within the SUCCESS trial [10] (ClinicalTrial.gov
registration ID is NCT02181101), where bloods were taken
before and after chemotherapy and (within 96 h) sent to the
laboratory for CTC assessment and serum samples stored
(Additional file 1: Figure S1); and (2) from UKCTOCS [32]
(ClinicalTrial.gov registration ID is NCT00058032), where
serum samples were used from: (i) 229 women diagnosed
with BC within the first three years after serum sample do-
nation and subsequently died during follow-up; (ii) 231
matched women who developed BC within three years after
sample donation and were alive at the end of follow-up; and
(iii) 465 women who did not develop BC within five years
after sample donation (Additional file 1: Figure S2). Blood
samples from all UKCTOCS volunteers were spun down for
serum separation after having been transported at room
temperature from trial centers to the central laboratory. The
median time between sample collection and centrifugation
was 22.1 h. Only 1 mL of serum per UKCTOCS volunteer
was available. All patients provided written informed
consent.

Isolation and bisulfite modification of DNA
DNA was isolated from tissue and serum samples at
GATC Biotech (Konstanz, Germany). Tissue DNA was
quantified using NanoDrop™ and Qubit™, and the size
was assessed by agarose gel electrophoresis. Serum
DNA was quantified using the Agilent Fragment
Analyzer and the High Sensitivity Large Fragment
Analysis Kit (AATI, USA). DNA was bisulfite converted
at GATC Biotech.
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DNAme analysis in tissue
Genome-wide methylation analysis was performed by
reduced representation bisulfite sequencing (RRBS) at
GATC Biotech. DNA was digested with MspI followed
by size selection of the library, providing enhanced
coverage for the CpG-rich regions [33, 34]. The digested
DNA was adapter-ligated, bisulfite-modified, and poly-
merase chain reaction (PCR)-amplified. The libraries
were sequenced on Illumina’s HiSeq 2500. Analysis of
the first samples sequenced with a 100-bp paired-end
mode showed that the library insert size was small.
Therefore, the remaining samples were sequenced with a
50-bp paired-end mode. Using Genedata Expressionist®
for Genomic Profiling v9.1, we established a bioinfor-
matics pipeline for the detection of cancer specific
differentially methylated regions (DMRs). The most
promising DMRs were taken forward for the develop-
ment and validation of serum-based clinical assays.

Targeted ultra-high coverage bisulfite sequencing of
serum DNA
Targeted bisulfite sequencing libraries were prepared at
GATC Biotech. Bisulfite modification was performed with
1 mL serum equivalent. A two-step PCR approach was
used to test up to three different markers per modified
DNA sample. The first PCR amplifies the target region
and adds linker sequences which are used in the second
PCR to add barcodes for multiplexing and sequences

needed for sequencing. Ultra-high coverage sequencing
was performed on Illumina’s MiSeq or HiSeq 2500 with a
75-bp or 125-bp paired-end mode, respectively.

Data analyses
Genedata Expressionist® for Genomic Profiling was used to
map reads to human genome version hg19, identify regions
with tumor-specific methylation patterns, quantify the
occurrence of those patterns, and calculate relative pattern
frequencies per sample. Pattern frequencies were calculated
as number of reads containing the pattern divided by total
reads covering the pattern region. Methylation patterns are
represented in terms of a binary string, where the methyla-
tion state of each CpG site is denoted by “1” if methylated
or “0” if unmethylated. The algorithm that we developed
scans the whole genome and identifies regions that contain
at least ten aligned paired-end reads. These read bundles
are split into smaller regions of interest (ROIs) which
contain at least 4 CpGs in a stretch of < 150 bp. For each
region and tissue/sample, the absolute frequency (number
of supporting reads) for all observed methylation patterns
was determined (Fig. 2a). This led to the discovery of tens
of millions of patterns per tissue/sample. The patterns were
filtered in a multi-step procedure to identify the methyla-
tion patterns specifically occurring in tumor samples. To
increase the sensitivity and specificity of our pattern
discovery procedure, we pooled reads from different tumor
or WBC samples and scored patterns based on over-

Fig. 1 Study design. Using reduced representation bisulfite sequencing (RRBS), 31 human tissue samples were analyzed to identify a total of 18
regions which underwent thorough technical validation. Six regions were selected whose methylation status has been analyzed in two sets
consisting of 110 serum samples. One marker (EFC#93) has been validated in two independent settings: (1) in SUCCESS study serum samples
from BC patients before and after chemotherapy; and (2) in UKCTOCS serum samples from women before BC diagnosis (within three years) or
who remained healthy for five years
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representation within tumor tissue. The results were
summarized in a specificity score, Sp, which reflects the
cancer specificity of the patterns. After applying a cut-off of
Sp ≥ 10, 1.3 million patterns for BC remained and were
further filtered according to the various criteria detailed in
Fig. 2b (further details are provided in Additional file 2).
The 95% confidence intervals (CI) for sensitivity and

specificity have been calculated according to the
efficient-score method [35]. The endpoints were defined
according to the STEEP criteria, with relapse-free
survival and overall survival as the primary endpoints.
The product-limit method according to Kaplan–Meier
was used to estimate survival. The survival estimates in
different groups were compared using the log-rank test.
The Cox proportional hazards regression model was
used for the analyses taking into account all variables
simultaneously.
Further details on samples and methods can be found

in Additional file 2.

Results
The samples, techniques, and purpose of the three
phases used in this study (marker discovery, assay
development, and assay validation) are summarized in
Fig. 1. We first identified DMRs based on their methyla-
tion patterns and frequencies in relevant genomic

regions, within a BC tissue panel. Methylation patterns
with high specificity for breast cancer tissue were identi-
fied using the procedure described in Fig. 2b.
The selected 18 BC specific patterns identified by

RRBS, were further validated using bisulfite sequencing.
Thirty-one bisulfite sequencing primer pairs (1–3 per
region) were designed and technically validated to deter-
mine PCR efficiency and sensitivity. A dilution series
obtained by mixing fully unmethylated (i.e. whole gen-
ome amplified DNA) with fully methylated DNA (i.e.
whole genome amplified DNA treated with CpG methyl-
transferase) was used to select six reactions which
showed good coverage after sequencing (> 104 reads)
and sensitivity in highly diluted (<1:104) samples
(Additional file 3: Table S1). The best six reactions were
taken into Phase 2, for further testing and assay develop-
ment, in prospectively collected serum sets. We used
ultra-deep bisulfite sequencing to develop assays for
these candidate regions in 32 serum samples from
Serum Set 1 (Figs. 1 and 2c). Five of the six reactions
showed good sensitivity and specificity (particularly
when discriminating between metastatic and primary
BC), based on the abundance of tumor-specific patterns
(see Additional file 1: Figure S3 for a complete overview
of pattern counts from region EFC#93) and were
selected for further validation in Serum Set 2 (n = 78).

Fig. 2 Principles of methylation pattern discovery in tissue (a, b) and analyses in serum (c). a RRBS was used in tissue samples in order to identify
CpG methylation patterns that are able to discriminate breast cancer from white blood cells (which were deemed to be the most abundant
source of cell-free DNA). “0” represents an unmethylated CpG and “1” represents a methylated CpG. An example of region EFC#93 is provided
which is a 136-bp-long region containing five linked CpGs. The cancer pattern consists of reads in which all linked CpGs are methylated, indicated
by “11111.” b RRBS data have been processed through a bioinformatic pipeline to identify the most promising markers. c The principles of the
serum DNA methylation assay
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DNA methylation marker EFC#93, which was identified
in RRBS as a region of ten linked CpGs methylated in
BC, was optimized to a pattern of five linked CpGs and
showed the best sensitivity and specificity independently
in Set 1 and 2 (Additional file 1: Figure S4). A statisti-
cally higher pattern frequency, for the optimized marker
EFC#93, was observed in the metastatic BC groups
compared to the healthy/benign lesions or primary BC
groups, in both Sets 1 and 2. This translates to an area
under the curve (AUC) of a receiver operating characteristics
(ROC) curve of 0.850 (95% CI = 0.745–0.955, P= 0.000004)
and 0.845 (95% CI = 0.739–0.952, P= 0.000004) to discrim-
inate healthy/benign lesions or primary BC from metastatic

BC in Set 1 and Set 2, respectively. When Set 1 and 2 data
were combined, the pattern frequency threshold was set to
0.0008 (i.e. 8 in 10,000 reads demonstrated methylation at all
CpGs in the EFC#93 region), which led to a sensitivity of
60.9% and a specificity of 92.0% with respect to identifying
metastatic BC (Additional file 1: Figure S4).
EFC#93 was then validated for use as a prognostic and

predictive BC marker in clinical trial samples (Fig. 1). As ex-
pected, due to delayed sample processing within these trials,
serum samples from both SUCCESS and UKCTOCS con-
tained high levels of contaminating WBC DNA, leading to
dilution of the cancer signal (Additional file 1: Figure S5). In
order to adjust for this, we made an a priori decision to

Table 1 SUCCESS patient characteristics before and after chemotherapy for EFC#93 serum DNAme

Characteristic Before chemotherapy After chemotherapy

EFC#93– (%) EFC#93+ (%) P valuea EFC#93– (%) EFC#93+ (%) P valuea

Patients (n) 385 (91.9) 34 (8.1) 371 (89.4) 44 (10.6)

Age (mean ± SD) 53.7 ± 10.3 55.2 ± 10.1 0.380 53.5 ± 10.4 56.2 ± 9.3 0.097

Menopausal status Premenopausal 165 (42.9) 15 (44.1) 1.000 165 (44.5) 15 (34.1) 0.202

Postmenopausal 220 (57.1) 19 (55.9) 206 (55.5) 29 (65.9)

Stage (T) T1 158 (41.0) 9 (26.5) 0.110 157 (42.3) 10 (22.7) 0.014

T2–4 227 (59.0) 25 (73.5) 214 (57.7) 34 (77.3)

Nodes (N) NO 130 (33.9) 7 (20.6) 0.130 124 (33.4) 13 (30.2) 0.735

N1–3 254 (66.1) 27 (79.4) 247 (66.6) 30 (69.8)

Histology Invasive ductal 310 (80.5) 25 (73.5) 0.370 296 (79.8) 36 (81.8) 0.844

Others 75 (19.5) 9 (26.5) 75 (20.2) 8 (18.2)

Grading Grade 1/2 199 (51.7) 16 (47.1) 0.721 190 (51.2) 23 (52.3) 1.000

Grade 3 186 (48.3) 18 (52.9) 181 (48.8) 21 (47.7)

Estrogen (ER) receptor ER– 128 (33.2) 10 (29.4) 0.708 128 (34.5) 10 (22.7) 0.130

ER+ 257 (66.8) 24 (70.6) 243 (65.5) 34 (77.3)

Progesterone (PR) receptor PR– 155 (40.4) 11 (32.4) 0.465 150 (40,5) 16 (36.4) 0.629

PR+ 229 (59.6) 23 (67.6) 220 (59.5) 28 (63.6)

HER2 status HER2– 294 (77.0) 24 (70.6) 0.403 276 (75.0) 38 (86.4) 0.132

HER2+ 88 (23.0) 10 (29.4) 92 (25.0) 6 (13.6)

Surgery Breast conserving 273 (70.9) 16 (47.1) 0.006 264 (71.2) 23 (52.3) 0.015

Mastectomy 112 (29.1) 18 (52.9) 107 (28.8) 21 (47.7)

Chemotherapy FEC-D 193 (50.1) 18 (52.9) 0.858 186 (50.1) 22 (50.0) 1.000

FEC-DG 192 (49.9) 16 (47.1) 185 (49.9) 22 (50.0)

Bisphosphonates Zometa 2 years 193 (50.1) 17 (50.0) 1.000 185 (49.9) 23 (52.3) 0.874

Zometa 5 years 192 (49.9) 17 (50.0) 186 (50.1) 21 (47.7)

Circulating tumor cells (CTCs) CTC– before chemo 316 (82.1) 20 (58.8) 0.003 303 (81.7) 32 (72.3) 0.160

CTC+ before chemo 69 (17.9) 14 (41.2) 68 (18.3) 12 (27.7)

CTC– after chemo 304 (79.0) 27 (79.4) 1.000 302 (81.4) 28 (63.6) 0.009

CTC+ after chemo 81 (21.0) 7 (20.6) 69 (18.6) 16 (36.4)

EFC#93 serum DNAme was deemed positive (+ve) at or above a pattern frequency of 0.00008
aTwo-sided t-test (contingent upon age) or Chi-square test (for all other parameters)
Information on N, PR and HER2 is missing from 1, 1 and 3 patients, respectively. Serum DNAme was not analysed for 4 post-treatment samples
FEC-D fluorouracil-epirubicin-cyclophosphamide (500/100/500 mg/m2, FEC) followed by docetaxel (100 mg/mg2), FEC-DG fluorouracil-epirubicin-cyclophosphamide
(500/100/500 mg/m2, FEC) followed by gemcitabine (1000 mg/m2 d1,8)-docetaxel (75 mg/m2), SD standard deviation
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reduce the threshold for EFC#93 pattern frequency by a fac-
tor of 10 to 0.00008 (i.e. 8/100,000 reads demonstrated
methylation at all five linked CpGs within the EFC#93
region). Table 1 shows SUCCESS patient characteristics,
correlated with EFC#93 positivity/negativity, before and
after chemotherapy. Using our predetermined threshold,
EFC#93 positivity was significantly associated with CTC
presence, both before and after chemotherapy (Chi-square
test, P < 0.01, Table 1) although ECF#93 pattern frequencies
were not significantly different in samples from patients
with either no, 1–4, or > 4 CTCs detected, respectively
(Additional file 1: Figure S6). Patients who underwent
breast-conserving therapy were more likely to be EFC#93-
negative compared to patients who underwent a mastec-
tomy; this is in all probability explained by the fact that
patients which presented with larger tumors tended to be
EFC#93-positive and would not have been eligible for
breast-conserving surgery. This is consistent with the
findings that EFC#93 positivity after chemotherapy is
significantly (P = 0.014) less frequently observed in early
stage (T1) compared to late stage (T2–4) cancers. None of
the other clinical–pathological features correlated with cell-
free DNA methylation of EFC#93 (Table 1). EFC#93 serum
positivity before chemotherapy was a very strong marker of
poor prognosis, for both relapse-free and overall survival

(Table 2 and Fig. 3a and b). This was independent of the
prognostic capability of CTCs (Additional file 1: Figures S7
and S8). Hazard ratios (HRs) (95% CI) for overall survival in
the multivariable model were 5.973 (2.634–13.542) and
3.623 (1.681–7.812) for EFC#93 and CTCs, respectively
(Table 2). Patients who were CTC-positive and EFC#93-
positive had an extremely poor outcome, with > 70% of
these patients relapsing within five years (Fig. 3c and d).
Neither serum marker EFC#93 nor CTCs alone were
predictive of the outcome in samples collected after chemo-
therapy (Additional file 1: Figures S9 and S10).
To assess whether EFC#93 serum DNAme can diagnose

women with poor prognostic BC earlier, we analyzed
serum samples from 925 women from our UKCTOCS
cohort. The amount of DNA as well as the fragment
length was dramatically higher than expected and corre-
lated with the average UK temperature (Additional file 1:
Figures S11 and S12); there was also a good correlation
between DNA amount and fragment length (Additional
file 1: Figure S13) indicating a substantial leak of blood
cell DNA into the serum during the blood transport.
Within this nested case/control setting, the women
with BC (cases) had provided serum samples up to
three years before diagnosis. Again, we a priori hy-
pothesized that the high background levels of DNA

Table 2 Univariate and multivariable proportional hazards model for relapse-free and overall survival for SUCCESS serum samples

Characteristic Univariate analyses

Relapse-free survival Overall survival

HR (95% CI) P value HR (95% CI) P value

Menopausal status, post vs pre 1.323 (0.750–2.333) 0.335 2.872 (1.164–7.086) 0.022

Tumor size, T2-T4 vs T1 2.268 (1.187–4.332) 0.013 3.881 (1.343–11.218) 0.012

Lymph node involvement, N1-3 vs N0 1.645 (0.861–3.142) 0.132 3.012 (1.045–8.683) 0.041

Estrogen receptor (ER) status, ER- vs ER+ 1.316 (0.999–1.734) 0.051 1.333 (0.918–1.934) 0.131

Progesterone receptor (PR) status, PR- vs PR+ 1.180 (0.897–1.554) 0.237 1.219 (0.839–1.772) 0.298

HER2 status, HER2+ vs HER2- 1.907 (0.858–4.241) 0.113 1.789 (0.618–5.178) 0.283

Grading, G3 vs G1/2 1.079 (0.623–1.868) 0.786 1.129 (0.535–2.384) 0.75

CTCs before chemo, CTC+ vs CTC- 3.666 (2.110–6.368) <0.0001 5.681 (2.686–12.014) <0.0001

CTCs after chemo, CTC+ vs CTC- 1.401 (0.757–2.592) 0.283 1.467 (0.646–3.331) 0.36

EFC#93 before chemo, EFC#93+ vs EFC#93- 4.912 (2.613–9.233) <0.0001 7.689 (3.518–16.804) <0.0001

EFC#93 after chemo, EFC#93+ vs EFC#93- 1.913 (0.927–3.949) 0.079 1.807 (0.673–4.853) 0.24

Multivariable analyses

Relapse-free survival Overall survival

HR (95% CI) P value HR (95% CI) P value

Menopausal status 1.294 (0.728–2.302) 0.379 2.688 (1.070–6.750) 0.035

Tumor size 1.763 (0.914–3.401) 0.091 2.945 (1.009–8.597) 0.048

Lymph node involvement 1.442 (0.750–2.775) 0.273 2.242 (0.765–6.566) 0.141

CTCs before chemo 2.847 (1.613–5.024) 0.0003 3.623 (1.681–7.812) 0.001

EFC#93 before chemo 3.782 (1.965–7.281) <0.0001 5.973 (2.634–13.542) <0.0001

Cox proportional hazards models. All statistical tests were two-sided
CI confidence interval, CTC circulating tumor cell, HR hazard ratio
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from lysed blood cells would impact on assay sensitiv-
ity, particularly in a pre-clinical setting where only
traces of cancer DNA were expected in the circula-
tion. We therefore split all samples into two groups:
(1) low serum DNA amount; and (2) high serum
DNA amount. In the “low DNA” group, we observed
a significantly higher EFC#93 serum DNAme pattern
frequency in the women who developed BC within
one year after sample donation and subsequently died
(Fig. 4a; cut-off threshold of 0.00008). Due to the high
levels of background DNA, no significant findings
were observed in the “high DNA” sample groups
(Fig. 4b). In the “low DNA” group, EFC#93 DNAme
was able to identify 43% of women 3–6 months and
25% of women 6–12 months before the diagnosis of a
BC which eventually led to death, with a specificity of 88%
(Fig. 4c). The sensitivity of serum EFC#93 methylation in
detecting fatal BCs up to one year in advance of diagnosis
was ~ 4-fold higher compared to non-fatal BCs (33.9%
compared to 9.3%). In fact, the sensitivity for non-fatal
BCs was within the false-positive range of the healthy

samples, indicating that non-fatal BCs are not detected
with this marker.

Discussion
We demonstrate that our serum DNAme marker,
EFC#93, can be detected up to one year in advance of BC
diagnosis and is a marker for poor prognosis in the
adjuvant primary treatment setting. EFC#93 is located
within GP5, a gene coding for a surface glycoprotein
which has been suggested to be involved in hematogenous
breast cancer metastasis [36].
The use of tumor-specific methylated DNA in serum

using targeted ultra-high bisulfite sequencing has the
following advantages compared to alternative strategies: (1)
patient plasma/serum DNA can be amplified to increase
assay sensitivity; (2) abnormal DNAme is a stable tumor-
specific marker occurring early in carcinogenesis and is
conserved throughout disease progression [22]; (3)
selection of CpG island hypermethylation simplifies assay
design; and (4) DNAme over several linked CpGs
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Fig. 3 EFC#93 serum DNAme and CTC analyses in the SUCCESS trial in samples taken before chemotherapy. Kaplan–Meier analysis for relapse-free survival
(a) and overall survival (b) according to the presence (EFC#93 pattern frequency≥ 0.00008) or absence (EFC#93 pattern frequency < 0.00008) of marker
EFC#93 before chemotherapy. Kaplan–Meier analysis for relapse-free survival (c) and overall survival (d) according to the presence/absence of EFC#93 and
CTCs. P values from a two-sided log-rank test. CTC– no CTC present, CTC+ at least one CTC present
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constitutes a clearly detectable signal with a higher specifi-
city (due to alleviated sensitivity to sequencing errors).
A key limitation of any current large-scale population-

based cell-free DNA study, such as ours, is the lack of high-
quality samples. This was evident in both the SUCCESS
and UKCTOCS samples, where the blood samples were
not processed until 24–96 h after the blood was drawn and
hence contained large amounts of leaked WBC DNA. In
healthy individuals, cell-free DNA is normally present at
concentrations in the range of 0–100 ng/mL and at an
average of 30 ng/mL [37]. DNA derived from tumor cells is
also shorter than that from non-malignant cells in the
plasma of cancer patients and typically 166 bp long [38].
Blood tubes which stabilize cell-free DNA and prevent
leakage of WBC DNA are now available [39] and will be
used for any future studies.
The leaked DNA in these serum samples will no doubt

have led to a preferential amplification of non-cancer
DNA. Despite these complicating factors, EFC#93 serum
DNAme, before treatment, was a strong prognostic
factor and was complementary to CTCs. Some previous
studies on CTCs used a cut-off value of > 5 cells/mL; this
may certainly be valid and useful for metastatic BC
patients. In the SUCCESS setting of primary BC

patients, only 8/419 patients (1.9%) had > 5 CTCs/mL.
Had we taken this CTC cut-off, the relapse-free survival
HR would have been 4.8 with a relatively wide 95% CI of
1.5–15.5 (P = 0.009). Hence, the chosen threshold that we
pre-specified in previous work [10] (i.e. CTCs detectable or
not) is completely justified in this primary cancer setting.
For the current genetic cell-free DNA markers the detec-

tion limit is in the range of 0.1% allele frequency (i.e. 1 mu-
tated in the background of 1000 non-mutated alleles can be
detected [15, 21]). Ultra-high coverage bisulfite-sequencing,
however, allows for far more sensitive testing. Mammog-
raphy screening in women aged 50–75 years has a sensitiv-
ity of 82–86% and a specificity of 88–92% for detecting any
BC; however, the majority of these cancers are not fatal
[40]. EFC#93 serum DNAme has a sensitivity of 43% in
identifying fatal breast cancer up to six months in advance
of current diagnosis at a similar specificity (88%) to mam-
mography, supporting the rationale for incorporating serum
DNAme markers in future cancer-screening trials.
Based on the evidence accumulated so far, we have to

assume that EFC#93 indicates the presence of dissemi-
nated breast cancer, which at least in a proportion of
women, will not yet be clinically evident in the breast.
Hence, the question arises whether EFC#93-positive

a b

Fig. 4 Pattern frequency of EFC#93 in women from the UKCTOCS. EFC#93 pattern frequency in samples with low (a) or high (b) amounts of DNA
in the serum sample. c Performance of EFC#93 serum DNAme marker (cut-off threshold = 0.00008) depending on time to diagnosis and whether
or not women subsequently died. Data separated based on DNA amount in the serum sample (95% CI in brackets). P values in (a) and (b) are
from a Mann–Whitney U-test and are relative to the control group. Control no cancer developed, BC-D breast cancer which eventually led to
death, BC-ND breast cancer which did not lead to death, mo months, yr years
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mammography-negative women should watch and wait
(i.e. within an enhanced surveillance program) or
whether this group of women could also be offered a
strategy which actively deals with the likely disseminated
disease until radiological evidence in the breast starts to
arise. Anti-hormonal treatment (i.e. Tamoxifen or aromatase
inhibitors) are being used for both adjuvant and preventive
treatment. Therefore, we assessed whether EFC#93 positivity
after SUCCESS chemotherapy (which is before the initiation
of anti-hormonal treatment) is associated with survival:
EFC#93 positivity in post-chemotherapy samples of
hormone receptor-negative women still indicated a poor
prognosis whereas EFC#93 positivity in hormone
receptor-positive women was no longer associated with
poor prognosis (Additional file 1: Figure S14). CTC status
in post-chemotherapy samples was not associated with
outcome irrespective of subsequent anti-hormonal treat-
ment (Additional file 1: Figure S15).

Conclusions
Overall and for the first time, our study provides
evidence that serum DNAme markers can diagnose fatal
BCs up to one year in advance of current diagnosis and
enable individualized BC treatment which may even
commence before obtaining radiological evidence in the
breast. In addition, the combination of CTC and cell-
free DNA analysis might further improve risk stratifica-
tion of breast cancer patients. The recent advance of
purposed blood tubes will facilitate clinical implementa-
tion of DNAme pattern detection of cell-free DNA as a
clinical tool in cancer medicine.
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