1,362 research outputs found
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
Activities within the period from July 1, 1992 through December 31, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the calibration of the Millimeter-wave Imaging Radiometer (MIR), preliminary flight data analysis, and preparation for TOGA/COARE. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. In the current configuration, the MIR has channels at 90, 150, 183(+/-1,3,7), and 220 GHz. Provisions for three additional channels at 325(+/-1,3) and 8 GHz have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. Past Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design, in-flight software, and post-flight data display software. The combination of the above millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide unique radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been published, and is included as an appendix
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
Activities within the period from January 1, 1992 through June 30, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the integration and initial data flights of the MIR on board the NASA ER-2. Georgia Tech contributions during this period include completion of the MIR flight software and implementation of a 'quick-view' graphics program for ground based calibration and analysis of the MIR imagery. In the current configuration, the MIR has channels at 90, 150, 183 +/- 1,3,7, and 220 GHz. Provisions for three additional channels at 325 +/-1,3 and 9 GHZ have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. The combination of the millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide the necessary aircraft radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been accepted for publication (Gasiewski, 1992), and is included as Appendix A. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. Other Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design
On Spatial Consensus Formation: Is the Sznajd Model Different from a Voter Model?
In this paper, we investigate the so-called ``Sznajd Model'' (SM) in one
dimension, which is a simple cellular automata approach to consensus formation
among two opposite opinions (described by spin up or down). To elucidate the SM
dynamics, we first provide results of computer simulations for the
spatio-temporal evolution of the opinion distribution , the evolution of
magnetization , the distribution of decision times and
relaxation times . In the main part of the paper, it is shown that the
SM can be completely reformulated in terms of a linear VM, where the transition
rates towards a given opinion are directly proportional to frequency of the
respective opinion of the second-nearest neighbors (no matter what the nearest
neighbors are). So, the SM dynamics can be reduced to one rule, ``Just follow
your second-nearest neighbor''. The equivalence is demonstrated by extensive
computer simulations that show the same behavior between SM and VM in terms of
, , , , and the final attractor statistics. The
reformulation of the SM in terms of a VM involves a new parameter , to
bias between anti- and ferromagnetic decisions in the case of frustration. We
show that plays a crucial role in explaining the phase transition
observed in SM. We further explore the role of synchronous versus asynchronous
update rules on the intermediate dynamics and the final attractors. Compared to
the original SM, we find three additional attractors, two of them related to an
asymmetric coexistence between the opposite opinions.Comment: 22 pages, 20 figures. For related publications see
http://www.ais.fraunhofer.de/~fran
Kinematic Comparison of Dolphin Kicking Performed in a Prone and Supine Body Position
Underwater dolphin kicking has become an essential element in competitive swimming but little research has been performed to provide an understanding of this movement. PURPOSE: To examine hip and knee kinematics of prone and supine dolphin kicking as they relate to speed. METHODS: Six collegiate swimmers (1.77±0.07 m, 72.4±7.6 kg, 19.8±1.0 yrs) experienced with dolphin kicking completed six 10 m maximal effort underwater kicking trials; three trials in a prone position and three trials in a supine position. An underwater camera was calibrated using a projective scaling technique and subsequently used to record each trial at 60 Hz. Twelve body landmarks were digitized from the video recordings to determine whole body center of mass location and hip and knee joint angles. Data were filtered using a fourth order Butterworth low-pass digital filter with cutoff frequencies individually determined for each coordinate or each landmark. Linear velocity of the center of mass was computed using the first central difference method. Hip and knee joint ranges of motion (ROM) were compared between body positions using a 2x2 (joint x body position) repeated measures ANOVA. Kick rate (KR) and horizontal velocity of the center of mass were compared between body positions using a two-tailed dependent t-test. RESULTS: Neither horizontal velocity (t(4)=0.308, p=0.774) nor kicking rate (t(4)=0.371, p=0.730) were different between body positions (Table 1). ROM was significantly greater in the knee than the hip (F(1,4)=110.967, p 2=0.965). ROM was not affected by body position (F(1,4)=1.068, p=0.36, 2=0.211). ROM did not interact between joint and body position (F(1,4)=1.461, p=0.818, 2=0.015). CONCLUSION: Despite some recent suggestions that a supine dolphin kick may be more effective than a prone dolphin kick, no kinematic difference were observed in this sample of swimmers.
Table 1. Dolphin Kicking Kinematics.
PRONE
SUPINE
KNEE ROM (degrees)
69.7±4.5
73.6.7±6.7
HIP ROM (degrees)
37.7±8.3
40.5±9.0
HORIZONTAL VELOCITY (m/s)
1.82±1.13
1.80±1.04
KICK RATE (kicks/min)
135.0±71.9
136.4±67.
Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data
Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values
Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program
Biomarkers for Parkinson's disease (PD) diagnosis, prognostication and clinical trial cohort selection are an urgent need. While many promising markers have been discovered through the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP) and other mechanisms, no single PD marker or set of markers are ready for clinical use. Here we discuss the current state of biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP in PD biomarker identification and present guidelines to facilitate their development. These guidelines include: harmonizing procedures for biofluid acquisition and clinical assessments, replication of the most promising biomarkers, support and encouragement of publications that report negative findings, longitudinal follow-up of current cohorts including the PDBP, testing of wearable technologies to capture readouts between study visits and development of recently diagnosed (de novo) cohorts to foster identification of the earliest markers of disease onset
Implied volatility of basket options at extreme strikes
In the paper, we characterize the asymptotic behavior of the implied
volatility of a basket call option at large and small strikes in a variety of
settings with increasing generality. First, we obtain an asymptotic formula
with an error bound for the left wing of the implied volatility, under the
assumption that the dynamics of asset prices are described by the
multidimensional Black-Scholes model. Next, we find the leading term of
asymptotics of the implied volatility in the case where the asset prices follow
the multidimensional Black-Scholes model with time change by an independent
increasing stochastic process. Finally, we deal with a general situation in
which the dependence between the assets is described by a given copula
function. In this setting, we obtain a model-free tail-wing formula that links
the implied volatility to a special characteristic of the copula called the
weak lower tail dependence function
Determinant and Weyl anomaly of Dirac operator: a holographic derivation
We present a holographic formula relating functional determinants: the
fermion determinant in the one-loop effective action of bulk spinors in an
asymptotically locally AdS background, and the determinant of the two-point
function of the dual operator at the conformal boundary. The formula originates
from AdS/CFT heuristics that map a quantum contribution in the bulk partition
function to a subleading large-N contribution in the boundary partition
function. We use this holographic picture to address questions in spectral
theory and conformal geometry. As an instance, we compute the type-A Weyl
anomaly and the determinant of the iterated Dirac operator on round spheres,
express the latter in terms of Barnes' multiple gamma function and gain insight
into a conjecture by B\"ar and Schopka.Comment: 11 pages; new comments and references added, typos correcte
Rabies screen reveals GPe control of cocaine-triggered plasticity.
Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the increase in GPe labelling. Inhibition of GPe activity revealed that it contributes to two forms of cocaine-triggered behavioural plasticity, at least in part by disinhibiting dopamine neurons in the ventral tegmental area. These results suggest that rabies-based unbiased screening of changes in input populations can identify previously unappreciated circuit elements that critically support behavioural adaptations
- …
