407 research outputs found

    Uranyl complexes formed with apara-t-butylcalix[4]arene bearing phosphinoyl pendant arms on the lower rim. Solid and solution studies

    Get PDF
    The current interest in functionalized calixarenes with phosphorylated pendant arms resides in their coordination ability towards f elements and capability towards actinide/rare earth separation. Uranyl cation forms 1:1 and 1:2 (M:L) complexes with atetra-phosphinoylated p-tert-butylcalix[4]arene, B4bL4: UO2(NO3)2(B4bL4)n· xH2O (n = 1, x = 2, 1; n = 2, x = 6, 2). Spectroscopic data point to the inner coordination sphere of 1 containing one monodentate nitrate anion, one water molecule and the four phosphinoylated arms bound to UO22+ while in 2, uranyl is only coordinated to calixarene ligands. In both cases the U(VI) ion is 8-coordinate. Uranyl complexes display enhanced metal-centred luminescence due to energy transfer from the calixarene ligands; the luminescence decays are bi-exponential with associated lifetimes in the ranges 220μs <τs <250μs and 630μs <τL < 640μs, pointing to the presence of two species with differently coordinated calixarene, as substantiated by aXPS study of U(4f5/2,7/2), O(1s) and P(2p) levels on solid state samples. The extraction study of UO22+ cation and trivalent rare-earth (Y, La, Eu) ions from acidic nitrate media by B4bL4 in chloroform shows the uranyl cation being much more extracted than rare earth

    Cyanomethylene-bis(phosphonate)-Based Lanthanide Complexes: Structural, Photophysical, and Magnetic Investigations

    Get PDF
    10 pagesInternational audienceThe syntheses, structural investigations, magnetic and photophysical properties of a series of 10 lanthanide mononuclear complexes, containing the heteroditopic ligand cyanomethylene-bis(5,5-dimethyl-2-oxo-1,3,2λ5-dioxa-phosphorinane) (L), are described. The crystallographic analyses indicate two structural types: in the first one, [LnIII(L)3(H2O)2]*H2O (Ln = La, Pr, Nd), the metal ions are eight-coordinated within a square antiprism geometry, while the second one, [LnIII(L)3(H2O)]*8H2O (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er), contains seven-coordinated LnIII ions within distorted monocapped trigonal prisms...

    Immobilization, Trapping, and Anion Exchange of Perrhenate Ion Using Copper-Based Tripodal Complexes

    Get PDF
    We describe a multidentate tripodal ligand in which three pendant arms carrying di(2-picolyl)amine units are linked to the ortho positions of a tris(o-xylyl) scaffold, providing N(CH[subscript 2]-o-C[subscript 6]H[subscript 4]CH[subscript 2]N(CH2py)[subscript 2])[subscript 3] (L). Reaction of L with CuCl[subscript 2] in the presence of hexafluorophosphate anion afforded blue cubes of [(CuCl)[subscript 3]L](PF[subscript 6])[subscript 3]·5H[subscript 2]O (1). Crystallographic studies of 1 revealed that the three symmetry-related arms each coordinate a {Cu[superscript II]Cl} unit, and two molecules of 1 are connected to one another through a Cu(μ-Cl)[subscript 2]Cu bridge, extending the molecular structure to form a two-dimensional (2-D) layer. These 2-D layers pack in an ABCABC... fashion with PF[subscript 6]– anions located in between. Reaction of 1 with a stoichiometric amount of perrhenate ion afforded blue plates of [(CuCl)[subscript 3]L](PF[subscript 6])(ReO[subscript 4])[subscript 2]·3H[subscript 2]O (2). Compound 2 has the same lattice structure as 1, but the tricopper unit backbone now traps one ReO[subscript 4]– anion through Coulombic interactions. In addition, three molecules of 2 are bridged by a perrhenate ion, forming a Cu[subscript 3](μ[superscript 3]-ReO[subscript 4]) cluster, to give a different 2-D structure displaying a rare tridentate bridging ReO[subscript 4]– mode. Thus, in addition to classic perrhenate trapping through weak Coulombic interactions, 2 represents an exceptional example in which the ReO[subscript 4]– anion is immobilized in an extended framework through tight covalent interactions. The interlamellar PF[subscript 6]– anions in 1 can be exchanged with other anions including perrhenate, perchlorate, or periodate. The structural similarity between perrhenate and pertechnetate makes these materials of potential interest for pertechnetate trapping

    Herpes Simplex Virus Type 1 Infection Facilitates Invasion of Staphylococcus aureus into the Nasal Mucosa and Nasal Polyp Tissue

    Get PDF
    Background: Staphylococcus aureus (S. aureus) plays an important role in the pathogenesis of severe chronic airway disease, such as nasal polyps. However the mechanisms underlying the initiation of damage and/or invasion of the nasal mucosa by S. aureus are not clearly understood. The aim of this study was to investigate the interaction between S. aureus and herpes simplex virus type 1 (HSV1) in the invasion of the nasal mucosa and nasal polyp tissue. Methodology/Principal Findings: Inferior turbinate and nasal polyp samples were cultured and infected with either HSV1 alone, S. aureus alone or a combination of both. Both in turbinate mucosa and nasal polyp tissue, HSV1, with or without S. aureus incubation, led to focal infection of outer epithelial cells within 48 h, and loss or damage of the epithelium and invasion of HSV1 into the lamina propria within 72 h. After pre-infection with HSV1 for 24 h or 48 h, S. aureus was able to pass the basement membrane and invade the mucosa. Epithelial damage scores were significantly higher for HSV1 and S. aureus co-infected explants compared with control explants or S. aureus only-infected explants, and significantly correlated with HSV1-invasion scores. The epithelial damage scores of nasal polyp tissues were significantly higher than those of inferior turbinate tissues upon HSV1 infection. Consequently, invasion scores of HSV1 of nasal polyp tissues were significantly higher than those of inferior turbinate mucosa in the HSV1 and co-infection groups, and invasion scores of S. aureus of nasal polyp tissues were significantly higher than those of inferior turbinate tissues in the co-infection group. Conclusions/Significance: HSV1 may lead to a significant damage of the nasal epithelium and consequently may facilitate invasion of S. aureus into the nasal mucosa. Nasal polyp tissue is more susceptible to the invasion of HSV1 and epithelial damage by HSV1 compared with inferior turbinate mucosa

    High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones

    Get PDF
    Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging
    • …
    corecore