63 research outputs found

    Ready for the OR? – Clinical anatomy and basic surgical skills for students in their preclinical education

    Get PDF
    Medical students’ first experience in the operating theatre often takes place during their electives and is therefore separated from the university’s medical curriculum. In the winter term 2009/10, the Institute of Anatomy and Cell Biology at the University of Ulm implemented an elective called “Ready for the OR” for 2nd year medical students participating in the dissection course. We attempted to improve learning motivation and examination results by transferring anatomical knowledge into a surgical setting and teaching basic surgical skills in preparation of the students’ first participation in the OR. Out of 69 online applicants, 50 students were randomly assigned to the Intervention Group (FOP) or the Control Group. In 5 teaching session students learned skills like scrubbing, stitching or the identification of frequently used surgical instruments. Furthermore, students visited five surgical interventions which were demonstrated by surgical colleagues on donated bodies that have been embalmed using the Thiel technique. The teaching sessions took place in the institute’s newly built “Theatrum Anatomicum” for an ideal simulation of a surgical setting. The learning outcomes were verified by OSPE. In a pilot study, an intervention group and a control group were compared concerning their examination results in the dissection course and their learning motivation through standardized SELLMO-test for students. Participants gained OSPE results between 60.5 and 92% of the maximum score. “Ready for the OR” was successfully implemented and judged an excellent add-on to anatomy teaching by the participants. However, we could not prove a significant difference in learning motivation or examination results. Future studies should focus on the learning orientation, the course’s long-term learning effects and the participants’ behavior in a real surgery setting

    Association of Caldendrin splice isoforms with secretory vesicles in neurohypophyseal axons and the pituitary

    Get PDF
    AbstractCaldendrin is a neuronal calcium-binding protein, which is highly enriched in the postsynaptic density fraction and exhibits a prominent somato-dendritic distribution in brain. Two additional splice variants derive from the caldendrin gene, which have unrelated N-termini and were previously only detected in the retina. We now show that these isoforms are present in neurohypophyseal axons and on secretory granules of endocrine cells. In light of the described interaction of the Caldendrin C-terminus with Q-type Cav2.1 calcium channels these data suggest that this interaction takes place in neurohypophyseal axons and pituitary cells indicating functions of the short splice variants in triggering Ca2+ transients to a vesicular target interaction

    Neonatal Oxytocin Treatment Ameliorates Autistic-Like Behaviors and Oxytocin Deficiency in Valproic Acid-Induced Rat Model of Autism

    Get PDF
    Autism spectrum disorder (ASD) is characterized by impaired social communication and repetitive/stereotyped behaviors. The neuropeptide oxytocin (OXT) plays a critical role in regulating social behaviors in the central nervous system, as indicated in both human and animal studies. We hypothesized that central OXT deficit is one of causes of etiology of ASD, which may be responsible for the social impairments. To test our hypothesis, central OXT system was examined in valproic acid (VPA)-induced rat model of autism (VPA rat). Our results showed that adolescent VPA rats exhibited a lower level of OXT mRNA and fewer OXT-ir cells in the hypothalamus than control rats. Additionally, OXT concentration in cerebrospinal fluid (CSF) was reduced. The number of OXT-ir cells in the supraoptic nucleus (SON) of neonatal VPA rats was also lower. Autistic-like behaviors were observed in these animals as well. We found that an acute intranasal administration of exogenous OXT restored the social preference of adolescent VPA rats. Additionally, early postnatal OXT treatment had long-term effects ameliorating the social impairments and repetitive behaviors of VPA rats until adolescence. This was accompanied by an increase in OXT-ir cells. Taken together, we demonstrated there was central OXT deficiency in the VPA-induced rat model of autism, and showed evidence that early postnatal OXT treatment had a long-term therapeutic effect on the autistic-like behaviors in VPA rats

    Synthesis of two SAPAP3 isoforms from a single mRNA is mediated via alternative translational initiation

    Get PDF
    In mammalian neurons, targeting and translation of specific mRNAs in dendrites contribute to synaptic plasticity. After nuclear export, mRNAs designated for dendritic transport are generally assumed to be translationally dormant and activity of individual synapses may locally trigger their extrasomatic translation. We show that the long, GC-rich 5′-untranslated region of dendritic SAPAP3 mRNA restricts translation initiation via a mechanism that involves an upstream open reading frame (uORF). In addition, the uORF enables the use of an alternative translation start site, permitting synthesis of two SAPAP3 isoforms from a single mRNA. While both isoforms progressively accumulate at postsynaptic densities during early rat brain development, their levels relative to each other vary in different adult rat brain areas. Thus, alternative translation initiation events appear to regulate relative expression of distinct SAPAP3 isoforms in different brain regions, which may function to influence synaptic plasticity

    Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease. Cytoplasmic fused in sarcoma (FUS) aggregates are pathological hallmarks of FUS-ALS. Proper shuttling between the nucleus and cytoplasm is essential for physiological cell function. However, the initial event in the pathophysiology of FUS-ALS remains enigmatic. Using human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs), we show that impairment of poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response (DDR) signaling due to mutations in the FUS nuclear localization sequence (NLS) induces additional cytoplasmic FUS mislocalization which in turn results in neurodegeneration and FUS aggregate formation. Our work suggests that a key pathophysiologic event in ALS is upstream of aggregate formation. Targeting DDR signaling could lead to novel therapeutic routes for ameliorating ALS

    Fast and efficient synaptosome isolation and post-synaptic density enrichment from hiPSC-motor neurons by biochemical sub-cellular fractionation

    No full text
    Summary: We describe here a time-efficient, in-house protocol for synaptosome isolation and enrichment of the post-synaptic density (PSD) from hiPSC-derived motor neurons. By using biochemical sub-cellular fractionation, the crude synaptosome is first isolated from the cytosol and is then further separated into the synaptic cytosol and the enriched PSD fraction. The protocol can also potentially be adapted to other hiPSC-derived neuronal types, with necessary changes made to cell seeding density and buffer volumes. : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics
    corecore