115 research outputs found

    Seasonal energy requirements of macrozooplankton from Kosterfjorden, Western Sweden

    Get PDF
    A study on the macroplankton community in Kosterfjorden, Western Sweden, is used to introduce a term called Index of population energy-flow, lpef. This term is defined as the ratio between the energy flow (consumption) through a specific population and the flow through the whole trophic level to which the species belongs. For simplicity, the study is restricted to 6 herbivorous and omnivorous species and 7 carnivorous species. Values for the production, respiration, and excretion are calculated from published data and are presented as means for each of the four seasons. On an annual basis between 8 and 52 % of the assimilated energy is bound in production, between 30 and 85% is used in respiration, and between 6 and 32% is excreted. the estimated grazing pressure of the 6 herbivorous/omnivorous species is relatively low compared with the estimated primary production, especially during spring and summer, indicating that most of the primary production goes directly to the benthic community. The copepod Calanus finmarchicus has the highest index of population energy-flow among herbivorous/omnivorous species with an annual mean of 87% and seasonal maximum in autumn (lpef = 96%). The copepod Metridia longa is most important in spring (lpef = 16%) and the three euphausiid species in summer (lpef = 4-5%). Among carnivores the copepod Chiridius armatus has the highest annual mean value (lpef = 43%) with seasonal maximum in spring (lpef = 65%). Small chaetognaths are most important in autumn (lpef = 18%) and the polychaete Tomopteris helgolandica and the trachymedusa Aglantha digitale in winter (lpef = 33 % and 17%, respectively)

    Metabolism and foraging strategies of mid‐latitude mesozooplankton during cyanobacterial blooms as revealed by fatty acids, amino acids, and their stable carbon isotopes

    Get PDF
    Increasing sea surface temperatures (SST) and blooms of lipid‐poor, filamentous cyanobacteria can change mesozooplankton metabolism and foraging strategies in marine systems. Lipid shortage and imbalanced diet may challenge the build‐up of energy pools of lipids and proteins, and access to essential fatty acids (FAs) and amino acids (AAs) by copepods. The impact of cyanobacterial blooms on individual energy pools was assessed for key species temperate Temora longicornis and boreal Pseudo‐/Paracalanus spp. that dominated field mesozooplankton communities isolated by sea‐sonal stratification in the central Baltic Sea during the hot and the cold summer. We looked at (a) total lipid and protein levels, (b) FA trophic markers and AA composition, and (c) compound‐specific stable carbon isotopes (ή13C) in bulk mesozooplankton and in a subset of parameters in particulate organic matter. Despite lipid‐poor cyanobacterial blooms, the key species were largely able to cover both energy pools, yet a tendency of lipid reduction was observed in surface animals. Omni‐ and car‐nivory feeding modes, FA trophic makers, and ή13C patterns in essential compounds emphasized that cyanobacterial FAs and AAs have been incorporated into meso‐zooplankton mainly via feeding on mixo‐ and heterotrophic (dino‐) flagellates and detrital complexes during summer. Foraging for essential highly unsaturated FAs from (dino‐) flagellates may have caused night migration of Pseudo‐/Paracalanus spp. from the deep subhalocline waters into the upper waters. Only in the hot summer (SST>19.0°C) was T. longicornis submerged in the colder subthermocline water (~4°C). Thus, the continuous warming trend and simultaneous feeding can eventually lead to competition on the preferred diet by key copepod species below the thermocline in stratified systems. A comparison of ή13C patterns of essential AAs in surface meso‐zooplankton across sub‐basins of low and high cyanobacterial biomasses revealed the potential of ή13C‐AA isoscapes for studies of commercial fish feeding trails across the Baltic Sea food webs

    Gill Damage to Atlantic Salmon (Salmo salar) Caused by the Common Jellyfish (Aurelia aurita) under Experimental Challenge

    Get PDF
    Peer-reviewed. Copyright © 2011 E.J. Baxter et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Over recent decades jellyfish have caused fish kill events and recurrent gill problems in marine-farmed salmonids. Common jellyfish (Aurelia spp.) are among the most cosmopolitan jellyfish species in the oceans, with populations increasing in many coastal areas. The negative interaction between jellyfish and fish in aquaculture remains a poorly studied area of science. Thus, a recent fish mortality event in Ireland, involving Aurelia aurita, spurred an investigation into the effects of this jellyfish on marine-farmed salmon. Methodology/Principal Findings: To address the in vivo impact of the common jellyfish (A. aurita) on salmonids, we exposed Atlantic salmon (Salmo salar) smolts to macerated A. aurita for 10 hrs under experimental challenge. Gill tissues of control and experimental treatment groups were scored with a system that rated the damage between 0 and 21 using a range of primary and secondary parameters. Our results revealed that A. aurita rapidly and extensively damaged the gills of S. salar, with the pathogenesis of the disorder progressing even after the jellyfish were removed. After only 2 hrs of exposure, significant multi-focal damage to gill tissues was apparent. The nature and extent of the damage increased up to 48 hrs from the start of the challenge. Although the gills remained extensively damaged at 3 wks from the start of the challenge trial, shortening of the gill lamellae and organisation of the cells indicated an attempt to repair the damage suffered. Conclusions: Our findings clearly demonstrate that A. aurita can cause severe gill problems in marine-farmed fish. With aquaculture predicted to expand worldwide and evidence suggesting that jellyfish populations are increasing in some areas, this threat to aquaculture is of rising concern as significant losses due to jellyfish could be expected to increase in the future

    Salinity Gradient of the Baltic Sea Limits the Reproduction and Population Expansion of the Newly Invaded Comb Jelly Mnemiopsis leidyi

    Get PDF
    The recent invasion of the comb jelly Mnemiopsis leidyi into northern European waters is of major public and scientific concern. One of the key features making M. leidyi a successful invader is its high fecundity combined with fast growth rates. However, little is known about physiological limitations to its reproduction and consequent possible abiotic restrictions to its dispersal. To evaluate the invasion potential of M. leidyi into the brackish Baltic Sea we studied in situ egg production rates in different regions and at different salinities in the laboratory, representing the salinity gradient of the Baltic Sea. During October 2009 M. leidyi actively reproduced over large areas of the Baltic Sea. Egg production rates scaled with animal size but decreased significantly with decreasing salinity, both in the field (7–29) and in laboratory experiments (6–33). Temperature and zooplankton, i.e. food abundance, could not explain the observed differences. Reproduction rates at conditions representing the Kattegat, south western and central Baltic Sea, respectively, were 2.8 fold higher at the highest salinities (33 and 25) than at intermediate salinities (10 and 15) and 21 times higher compared from intermediate to the lowest salinity tested (6). Higher salinity areas such as the Kattegat, and to a lower extent the south western Baltic, seem to act as source regions for the M. leidyi population in the central Baltic Sea where a self-sustaining population, due to the low salinity, cannot be maintained

    Gut evacuation rate and grazing impact of the krill Thysanoessa raschii and T. inermis

    Get PDF
    Gut evacuation rates and ingestion rates were measured for the krill Thysanoessa raschii and T. inermis in GodthĂ„bsfjord, SW Greenland. Combined with biomass of the krill community, the grazing potential on phytoplankton along the fjord was estimated. Gut evacuation rates were 3.9 and 2.3 h−1 for T. raschii and T. inermis, respectively. Ingestion rates were 12.2 ± 7.5 ”g C mg C−1 day−1 (n = 4) for T. inermis and 4.9 ± 3.2 ”g C mg C−1 day−1 (n = 4) for T. raschii, corresponding to daily rations of 1.2 and 0.5 % body carbon day−1. Clearance experiments conducted in parallel to the gut evacuation experiment gave similar results for ingestion rates and daily rations. Krill biomass was highest in the central part of the fjord’s length, with T. raschii dominating. Community grazing rates from krill and copepods were comparable; however, their combined impact was low, estimated as <1 % of phytoplankton standing stock being removed per day during this late spring study

    Population Maintenance of the Scyphozoan Cyanea sp. Settled Planulae and the Distribution of Medusae in the Niantic River, Connecticut, USA

    Get PDF
    Scyphozoan jellyfish are seasonally conspicuous in coastal waters, but relatively little is known about the factors that control their distribution and population dynamics.Cyanea sp is a seasonally abundant medusa in the Niantic River, Connecticut, U.S. and appears to maintain a population entirely within the estuary. To better understand the factors controlling their occurrence, we examined the temporal and spatial distribution of settled scyphistomae in relation to that of the medusae. Planula settlement patterns mirrored the presence of mature female medusae. The planulae settled primarily near the bottom. After settlement, planulacysts and polyps on the settlement plates were out competed by large barnacle and ascidian larvae, resulting in a sharp decline in cyst and polyp abundance. This stage-specific mortality may represent a population bottleneck in the life cycle of scyphozoans

    An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics

    Get PDF
    Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem dynamics, for example, the predicted increases in cyanobacterial blooms associated with global warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an appropriate framework linking experimental data with theory is lacking. Using ecophysiological data to develop a novel model structure, we provide the first validation of this thermal sensitivity hypothesis: increased temperature improves the consumer’s ability to control the autotrophic prey. Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion, growth and mortality rates, using an ecologically and economically important system (cyanobacteria grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of temperature impacts on consumer–prey dynamics by comparing simulations with microcosm observations. Then, through simulations, we indicate our conclusions remain valid, even with large changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and, critically, provide a novel model framework for needed, continued assessment

    Jellyfish Support High Energy Intake of Leatherback Sea Turtles (Dermochelys coriacea): Video Evidence from Animal-Borne Cameras

    Get PDF
    The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08–3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83–100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ‱d−1 but were as high as 167,797 kJ‱d−1 corresponding to turtles consuming an average of 330 kg wet mass‱d−1 (up to 840 kg‱d−1) or approximately 261 (up to 664) jellyfish‱d-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass‱d−1 equating to an average energy intake of 3–7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to southward migration

    Extensive cross-disciplinary analysis of biological and chemical control of Calanus finmarchicus reproduction during an aldehyde forming diatom bloom in mesocosms

    Get PDF
    Egg and faecal pellet production and egg hatching success of the calanoid copepod Calanus finmarchicus were monitored over a period of 14 days (14-28 April, 2008) while fed water from 4 differently treated mesocosms and ambient water. Two of the mesocosms used were inoculated with the polyunsaturated aldehyde (PUA)-producing diatom Skeletonema marinoi, while 2 received only nutrient additions with or without silica. The mesocosms developed blooms of S. marinoi, mixed diatoms or the haptophyte Phaeocystis pouchetii, respectively. Faecal pellet production of C. finmarchicus increased with increasing food availability. Egg production increased with time in all mesocosms to a maximum single female production of 232 eggs female(-1) day(-1) (average of 90 eggs female(-1) day(-1)) and followed the development of ciliates and P. pouchetii, but was not affected by the observed high (up to 15 nmol L(-1)) PUA production potential of the phytoplankton. The hatching success of the eggs produced on the mesocosm diets was high (78-96%) and was not affected by either aldehydes in the maternal diet or exposure to the dissolved aldehydes in the water
    • 

    corecore