39 research outputs found

    Interdisciplinary fracture network characterization in the crystalline basement: a case study from the Southern Odenwald, SW Germany

    Get PDF
    The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben (URG) and other regions worldwide. The hydraulic properties of the basement, which are one of the key factors in the productivity of geothermal power plants, are primarily controlled by hydraulically active faults and fractures. While the most accurate in situ information about the general fracture network is obtained from image logs of deep boreholes, such data are generally sparse and costly and thus often not openly accessible. To circumvent this problem, an outcrop analogue study was conducted with interdisciplinary geoscientific methods in the Tromm Granite, located in the southern Odenwald at the northeastern margin of the URG. Using light detection and ranging (lidar) scanning, the key characteristics of the fracture network were extracted in a total of five outcrops; these were additionally complemented by lineament analysis of two different digital elevation models (DEMs). Based on this, discrete fracture network (DFN) models were developed to calculate equivalent permeability tensors under assumed reservoir conditions. The influences of different parameters, such as fracture orientation, density, aperture and mineralization, were investigated. In addition, extensive gravity and radon measurements were carried out in the study area, allowing fault zones with naturally increased porosity and permeability to be mapped. Gravity anomalies served as input data for a stochastic density inversion, through which areas of potentially increased open porosity were identified. A laterally heterogeneous fracture network characterizes the Tromm Granite, with the highest natural permeabilities expected at the pluton margin, due to the influence of large shear and fault zones

    Transdiagnostic Processes as Mediators of Change in an Internet-Delivered Intervention Based on the Unified Protocol

    Get PDF
    Background Transdiagnostic treatments target shared mechanisms between disorders to facilitate change across diagnoses. The Unified Protocol (UP) aims at changing dysfunctional reactions towards emotions by increasing mindful emotion awareness and cognitive flexibility, as well as decreasing anxiety sensitivity and emotion avoidance. Method We investigated whether these transdiagnostic processes were malleable by treatment and mediated the relationship between treatment and outcome in an internet-delivered adaptation of the UP. N = 129 participants with mixed anxiety, depressive, and somatic symptom disorders were randomized to treatment or waitlist. Results The treatment yielded significant changes in all transdiagnostic processes over time in comparison to a waitlist condition. In separate mediator models, significant mediating effects were found for mindfulness, cognitive flexibility, behavioral activation, and experiential avoidance. When all mediators were combined in a multiple mediator model, the indirect effects through mindfulness and cognitive flexibility emerged as significant. Conclusion These findings add to the growing body of research on transdiagnostic processes as mediators of change and emphasize mindfulness and cognitive flexibility as a transdiagnostic treatment target. However, these results should be interpreted cautiously, as temporal precedence could not be established

    Deconstructing the Late Phase of Vimentin Assembly by Total Internal Reflection Fluorescence Microscopy (TIRFM)

    Get PDF
    Quantitative imaging of intermediate filaments (IF) during the advanced phase of the assembly process is technically difficult, since the structures are several µm long and therefore they exceed the field of view of many electron (EM) or atomic force microscopy (AFM) techniques. Thereby quantitative studies become extremely laborious and time-consuming. To overcome these difficulties, we prepared fluorescently labeled vimentin for visualization by total internal reflection fluorescence microscopy (TIRFM). In order to investigate if the labeling influences the assembly properties of the protein, we first determined the association state of unlabeled vimentin mixed with increasing amounts of labeled vimentin under low ionic conditions by analytical ultracentrifugation. We found that bona fide tetrameric complexes were formed even when half of the vimentin was labeled. Moreover, we demonstrate by quantitative atomic force microscopy and electron microscopy that the morphology and the assembly properties of filaments were not affected when the fraction of labeled vimentin was below 10%. Using fast frame rates we observed the rapid deposition of fluorescently labeled IFs on glass supports by TIRFM in real time. By tracing their contours, we have calculated the persistence length of long immobilized vimentin IFs to 1 µm, a value that is identical to those determined for shorter unlabeled vimentin. These results indicate that the structural properties of the filaments were not affected significantly by the dye. Furthermore, in order to analyze the late elongation phase, we mixed long filaments containing either Alexa 488- or Alexa 647-labeled vimentin. The ‘patchy’ structure of the filaments obtained unambiguously showed the elongation of long IFs through direct end-to-end annealing of individual filaments

    Perception of Thermal Pain and the Thermal Grill Illusion Is Associated with Polymorphisms in the Serotonin Transporter Gene

    Get PDF
    AIM: The main aim of this study was to assess if the perception of thermal pain thresholds is associated with genetically inferred levels of expression of the 5-HT transporter (5-HTT). Additionally, the perception of the so-called thermal grill illusion (TGI) was assessed. Forty-four healthy individuals (27 females, 17 males) were selected a-priori based on their 5-HTTLPR/rs25531 ('tri-allelic 5-HTTLPR') genotype, with inferred high or low 5-HTT expression. Thresholds for heat- and cold-pain were determined along with the sensory and affective dimensions of the TGI. RESULTS: Thresholds to heat- and cold-pain correlated strongly (rho  = -0.58, p<0.001). Individuals in the low 5-HTT-expressing group were significantly less sensitive to heat-pain (p = 0.02) and cold-pain (p = 0.03), compared to the high-expressing group. A significant gender-by-genotype interaction also emerged for cold-pain perception (p = 0.02); low 5-HTT-expressing females were less sensitive. The TGI was rated as significantly more unpleasant (affective-motivational dimension) than painful (sensory-discriminatory dimension), (p<0.001). Females in the low 5-HTT expressing group rated the TGI as significantly less unpleasant than high 5-HTT expressing females (p<0.05), with no such differences among men. CONCLUSION/SIGNIFICANCE: We demonstrate an association between inferred low 5-HTT expression and elevated thresholds to thermal pain in healthy non-depressed individuals. Despite the fact that reduced 5-HTT expression is a risk factor for chronic pain we found it to be related to hypoalgesia for threshold thermal pain. Low 5-HTT expression is, however, also a risk factor for depression where thermal insensitivity is often seen. Our results may thus contribute to a better understanding of the molecular underpinnings of such paradoxical hypoalgesia. The results point to a differential regulation of thermoafferent-information along the neuraxis on the basis of 5-HTT expression and gender. The TGI, suggested to rely on the central integration of thermoafferent-information, may prove a valuable tool in probing the affective-motivational dimension of these putative mechanisms

    arCHaeo 2023.3

    No full text
    &lt;p&gt;Journal on Swiss archaeology with articles in German, French and Italian.&lt;/p&gt; &lt;p&gt;Issue: Year 2023. No. 3&lt;/p&gt

    Arming Th17 cells for antifungal host defense

    Full text link
    Interleukin 17 (IL-17)-mediated immunity has emerged as a crucial host defense mechanism against fungal infections. The family of IL-17 cytokines is phylogenetically ancient, but remains the least understood of all cytokine subclasses. The effects mediated by IL-17 are pleiotropic and include the induction of antimicrobial peptides as well as cytokines and chemokines that lead to the recruitment and activation of neutrophils. Neutrophils in turn are key effector cells of the antifungal defense. CD4+ T cells act as a major source of IL-17 and a lot has been learned about these cells since their discovery a decade ago. This review highlights key aspects of the underlying mechanisms regulating the development of Th17 responses during fungal infections. We discuss the impact of different subsets of antigen-presenting cells, innate cytokine signals and tissue-specific factors on Th17 differentiation, and we highlight the prerequisites for the mediation by Th17 cells of vaccine immunity against fungi

    Combining Simulation and Augmented Reality Methods for Enhanced Worker Assistance in Manual Assembly

    No full text
    Lampen E, Teuber J, Gaisbauer F, Bär T, Pfeiffer T, Wachsmuth S. Combining Simulation and Augmented Reality Methods for Enhanced Worker Assistance in Manual Assembly. Procedia CIRP. 2019;81:588-593.Due to mass customization product variety increased steeply in the automotive industry, entailing the increment of worker’s cognitive load during manual assembly tasks. Although worker assistance methods for cognitive automation already exist, they proof insufficient in terms of usability and achieved time saving. Given the rising importance of simulation towards autonomous production planning, a novel approach is proposed using human simulation data in context of worker assistance methods to alleviate cognitive load during manual assembly tasks. Within this paper, a new concept for augmented reality-based worker assistance is presented. Additionally, a comparative user study (N=24) was conducted with conventional worker assistance methods to evaluate a prototypical implementation of the concept. The results illustrate the enhancing opportunity of the novel approach to save cognitive abilities and to induce performance improvements. The implementation provided stable information presentation during the entire experiment. However, with regard to the recentness, there has to be carried out further developments and research, concerning performance adaptions and investigations of the effectiveness

    Systematic review and meta-analysis of PIT tagging effects on mortality and growth of juvenile salmonids

    Get PDF
    A systematic review and meta-analysis was conducted to evaluate the appropriate tag:fish size ratio when tagging juvenile salmonids (genera Oncorhynchus, Salmo, and Salvelinus). The review yielded 18 publications with 211 control and treatment groups reporting results from laboratory studies on the effects of passive integrated transponder (PIT) tags, plus a small number of additional studies on acoustic transmitters. A meta-analysis of the PIT tagging studies showed significant heterogeneity among studies with respect to mortality. Meta-regression revealed that juvenile salmonid mortality increased curvilinearly with the tag:fish length ratio, indicating that mortality risk is rapidly enhanced as smaller fish or larger tag sizes are used. The tag:fish length ratio effect on daily length or mass gain increased linearly. The results provide an estimate of the effects of the tag:fish length ratio on mortality and growth parameters in juvenile salmonids. Based on this, we suggest that researchers can follow best practices for tagging juvenile salmonids with tags that are not greater than 17.5% of fish total length (TL). This equates a minimum size threshold of 131 mm TL for tagging salmonids with 23-mm PIT tags, and 69 mm TL with 12-mm PIT tags. This information can assist researchers, managers, and welfare agencies striving to use the best possible evidence to make informed decisions regarding fish tagging. Acoustic Tag effects Passive integrated transponder Salmon Trout MortalitypublishedVersio

    IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells

    Full text link
    Interleukin 17 (IL-17)-mediated immunity plays a key role in protection from fungal infections in mice and man. Here, we confirmed that mice deficient in the IL-17 receptor or lacking the ability to secrete IL-17 are highly susceptible to systemic candidiasis, but we found that temporary blockade of the IL-17 pathway during infection in wild-type mice did not impact fungal control. Rather, mice lacking IL-17 receptor signaling had a cell-intrinsic impairment in the development of functional NK cells, which accounted for the susceptibility of these mice to systemic fungal infection. NK cells promoted antifungal immunity by secreting GM-CSF, necessary for the fungicidal activity of neutrophils. These data reveal that NK cells are crucial for antifungal defense and indicate a role for IL-17 family cytokines in NK cell development. The IL-17-NK cell axis may impact immunity against not only fungi but also bacteria, viruses, and tumors
    corecore