313 research outputs found

    Origins and Consequences of Serpentine Endemism in the California Flora

    Get PDF
    Habitat specialization plays an important role in the creation and loss of biodiversity over ecological and evolutionary time scales. In California, serpentine soils have a distinctive flora, with 246 serpentine habitat specialists (i.e., endemics). Using molecular phylogenies for 23 genera containing 784 taxa and 51 endemics, we infer few transitions out of the endemic state, which is shown by an analysis of transition rates to simply reflect the low frequency of endemics (i.e., reversal rates were high). The finding of high reversal rates, but a low number of reversals, is consistent with the widely hypothesized trade-off between serpentine tolerance and competitive ability, under which serpentine endemics are physiologically capable of growing in less-stressful habitats but competitors lead to their extirpation. Endemism is also characterized by a decrease in speciation and extinction rates and a decrease in the overall diversification rate. We also find that tolerators (species with nonserpentine and serpentine populations) undergo speciation in serpentine habitats to give rise to new serpentine endemics but are several times more likely to lose serpentine populations to produce serpentine-intolerant taxa. Finally, endemics were younger on average than nonendemics, but this alone does not explain their low diversification

    Scaling properties of diffusion-limited reactions on fractal and euclidean geometries

    Full text link
    We review our scaling results for the diffusion-limited reactions A + A → 0 and A+B→0 on Euclidean and fractal geometries. These scaling results embody the anomalies that are observed in these reactions in low dimensions; we collect these observations under a single phenomenological umbrella. Although we are not able to fix all the exponents in our scaling expressions from first principles, we establish bounds that bracket the observed numerical results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45166/1/10955_2005_Article_BF01049612.pd

    Single random walker on disordered lattices

    Full text link
    Random walks on square lattice percolating clusters were followed for up to 2×105 steps. The mean number of distinct sites visited 〈 (S N ⊃> gives a spectral dimension of d s = 1.30±0.03 consistent with superuniversality ( d s =4J3) but closer to the alternative d s = 182/139, based on the low dimensionality correction. Simulations are also given for walkers on an energetically disordered lattice, with a jump probability that depends on the local energy mismatch and the temperature. An apparent fractal behavior is observed for a low enough reduced temperature. Above this temperature, the walker exhibits a “crossover” from fractal-to-Euclidean behavior. Walks on two- and three-dimensional lattices are similar, except that those in three dimensions are more efficient.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45148/1/10955_2005_Article_BF01012923.pd

    Rate processes on fractals: Theory, simulations, and experiments

    Full text link
    Heterogeneous kinetics are shown to differ drastically from homogeneous kinetics. For the elementary reaction A + A → products we show that the diffusion-limited reaction rate is proportional to t − h[A] 2 or to [A] x , where h=1- d s /2, X=1+ 2/d s =(h-2)(h-1 ), and d s is the effective spectral dimension. We note that for d = d s =1, h =1/2 and X = 3 , for percolating clusters d s = 4/3, h = 1/3 and X = 5/2 , while for “dust” d s h > 1/2 and ∞ > X > 3. Scaling arguments, supercomputer simulations and experiments give a consistent picture. The interplay of energetic and geometric heterogeneity results in fractal-like kinetics and is relevant to excitation fusion experiments in porous membranes, films, and polymeric glasses. However, in isotopic mixed crystals, the geometric fractal nature (percolation clusters) dominates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45150/1/10955_2005_Article_BF01010846.pd

    Inhibition of Histone Deacetylase Activity in Human Endometrial Stromal Cells Promotes Extracellular Matrix Remodelling and Limits Embryo Invasion

    Get PDF
    Invasion of the trophoblast into the maternal decidua is regulated by both the trophoectoderm and the endometrial stroma, and entails the action of tissue remodeling enzymes. Trophoblast invasion requires the action of metalloproteinases (MMPs) to degrade extracellular matrix (ECM) proteins and in turn, decidual cells express tissue inhibitors of MMPs (TIMPs). The balance between these promoting and restraining factors is a key event for the successful outcome of pregnancy. Gene expression is post-transcriptionally regulated by histone deacetylases (HDACs) that unpacks condensed chromatin activating gene expression. In this study we analyze the effect of histone acetylation on the expression of tissue remodeling enzymes and activity of human endometrial stromal cells (hESCs) related to trophoblast invasion control. Treatment of hESCs with the HDAC inhibitor trichostatin A (TSA) increased the expression of TIMP-1 and TIMP-3 while decreased MMP-2, MMP-9 and uPA and have an inhibitory effect on trophoblast invasion. Moreover, histone acetylation is detected at the promoters of TIMP-1 and TIMP-3 genes in TSA-treated. In addition, in an in vitro decidualized hESCs model, the increase of TIMP-1 and TIMP-3 expression is associated with histone acetylation at the promoters of these genes. Our results demonstrate that histone acetylation disrupt the balance of ECM modulators provoking a restrain of trophoblast invasion. These findings are important as an epigenetic mechanism that can be used to control trophoblast invasion

    Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor

    Get PDF
    Antidepressants increase adult hippocampal neurogenesis in animal models, but the underlying molecular mechanisms are unknown. In this study, we used human hippocampal progenitor cells to investigate the molecular pathways involved in the antidepressant-induced modulation of neurogenesis. Because our previous studies have shown that antidepressants regulate glucocorticoid receptor (GR) function, we specifically tested whether the GR may be involved in the effects of these drugs on neurogenesis. We found that treatment (for 3–10 days) with the antidepressant, sertraline, increased neuronal differentiation via a GR-dependent mechanism. Specifically, sertraline increased both immature, doublecortin (Dcx)-positive neuroblasts (+16%) and mature, microtubulin-associated protein-2 (MAP2)-positive neurons (+26%). This effect was abolished by the GR-antagonist, RU486. Interestingly, progenitor cell proliferation, as investigated by 5′-bromodeoxyuridine (BrdU) incorporation, was only increased when cells were co-treated with sertraline and the GR-agonist, dexamethasone, (+14%) an effect which was also abolished by RU486. Furthermore, the phosphodiesterase type 4 (PDE4)-inhibitor, rolipram, enhanced the effects of sertraline, whereas the protein kinase A (PKA)-inhibitor, H89, suppressed the effects of sertraline. Indeed, sertraline increased GR transactivation, modified GR phosphorylation and increased expression of the GR-regulated cyclin-dependent kinase-2 (CDK2) inhibitors, p27Kip1 and p57Kip2. In conclusion, our data suggest that the antidepressant, sertraline, increases human hippocampal neurogenesis via a GR-dependent mechanism that requires PKA signaling, GR phosphorylation and activation of a specific set of genes. Our data point toward an important role for the GR in the antidepressant-induced modulation of neurogenesis in humans

    FoxO1, A2M, and TGF-beta 1 : three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses

    Get PDF
    To date, gene-environment (GxE) interaction studies in depression have been limited to hypothesis-based candidate genes, since genome-wide (GWAS)-based GxE interaction studies would require enormous datasets with genetics, environmental, and clinical variables. We used a novel, cross-species and cross-tissues "omics" approach to identify genes predicting depression in response to stress in GxE interactions. We integrated the transcriptome and miRNome profiles from the hippocampus of adult rats exposed to prenatal stress (PNS) with transcriptome data obtained from blood mRNA of adult humans exposed to early life trauma, using a stringent statistical analyses pathway. Network analysis of the integrated gene lists identified the Forkhead box protein O1 (FoxO1), Alpha-2-Macroglobulin (A2M), and Transforming Growth Factor Beta 1 (TGF-beta 1) as candidates to be tested for GxE interactions, in two GWAS samples of adults either with a range of childhood traumatic experiences (Grady Study Project, Atlanta, USA) or with separation from parents in childhood only (Helsinki Birth Cohort Study, Finland). After correction for multiple testing, a meta-analysis across both samples confirmed six FoxO1 SNPs showing significant GxE interactions with early life emotional stress in predicting depressive symptoms. Moreover, in vitro experiments in a human hippocampal progenitor cell line confirmed a functional role of FoxO1 in stress responsivity. In secondary analyses, A2M and TGF-beta 1 showed significant GxE interactions with emotional, physical, and sexual abuse in the Grady Study. We therefore provide a successful 'hypothesis-free' approach for the identification and prioritization of candidate genes for GxE interaction studies that can be investigated in GWAS datasets.Peer reviewe

    Decreased SGK1 Expression and Function Contributes to Behavioral Deficits Induced by Traumatic Stress

    No full text
    Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology

    White matter changes in microstructure associated with a maladaptive response to stress in rats

    Get PDF
    In today's society, every individual is subjected to stressful stimuli with different intensities and duration. This exposure can be a key trigger in several mental illnesses greatly affecting one's quality of life. Yet not all subjects respond equally to the same stimulus and some are able to better adapt to them delaying the onset of its negative consequences. The neural specificities of this adaptation can be essential to understand the true dynamics of stress as well as to design new approaches to reduce its consequences. In the current work, we employed ex vivo high field diffusion magnetic resonance imaging (MRI) to uncover the differences in white matter properties in the entire brain between Fisher 344 (F344) and Sprague-Dawley (SD) rats, known to present different responses to stress, and to examine the effects of a 2-week repeated inescapable stress paradigm. We applied a tract-based spatial statistics (TBSS) analysis approach to a total of 25 animals. After exposure to stress, SD rats were found to have lower values of corticosterone when compared with F344 rats. Overall, stress was found to lead to an overall increase in fractional anisotropy (FA), on top of a reduction in mean and radial diffusivity (MD and RD) in several white matter bundles of the brain. No effect of strain on the white matter diffusion properties was observed. The strain-by-stress interaction revealed an effect on SD rats in MD, RD and axial diffusivity (AD), with lower diffusion metric levels on stressed animals. These effects were localized on the left side of the brain on the external capsule, corpus callosum, deep cerebral white matter, anterior commissure, endopiriform nucleus, dorsal hippocampus and amygdala fibers. The results possibly reveal an adaptation of the SD strain to the stressful stimuli through synaptic and structural plasticity processes, possibly reflecting learning processes.We thank Neurospin (high field MRI center CEA Saclay) for providing its support for MRI acquisition. JB was supported by grants from Fondation pour la Recherche Médicale (FRM) and Groupe Pasteur Mutualité (GPM). This work was supported by a grant from ANR (SIGMA). This work was performed on a platform of France Life Imaging (FLI) network partly funded by the grant ANR-11-INBS-0006. This work and RM were supported by a fellowship of the project FCT-ANR/NEU-OSD/0258/2012 founded by FCT/MEC (www.fct.pt) and by Fundo Europeu de Desenvolvimento Regional (FEDER). AC was supported by a grant from the Fondation NRJ.info:eu-repo/semantics/publishedVersio
    corecore