240 research outputs found

    Transcriptome and translatome co-evolution in mammals.

    Get PDF
    Gene-expression programs define shared and species-specific phenotypes, but their evolution remains largely uncharacterized beyond the transcriptome layer <sup>1</sup> . Here we report an analysis of the co-evolution of translatomes and transcriptomes using ribosome-profiling and matched RNA-sequencing data for three organs (brain, liver and testis) in five mammals (human, macaque, mouse, opossum and platypus) and a bird (chicken). Our within-species analyses reveal that translational regulation is widespread in the different organs, in particular across the spermatogenic cell types of the testis. The between-species divergence in gene expression is around 20% lower at the translatome layer than at the transcriptome layer owing to extensive buffering between the expression layers, which especially preserved old, essential and housekeeping genes. Translational upregulation specifically counterbalanced global dosage reductions during the evolution of sex chromosomes and the effects of meiotic sex-chromosome inactivation during spermatogenesis. Despite the overall prevalence of buffering, some genes evolved faster at the translatome layer-potentially indicating adaptive changes in expression; testis tissue shows the highest fraction of such genes. Further analyses incorporating mass spectrometry proteomics data establish that the co-evolution of transcriptomes and translatomes is reflected at the proteome layer. Together, our work uncovers co-evolutionary patterns and associated selective forces across the expression layers, and provides a resource for understanding their interplay in mammalian organs

    Increased Immune-Regulatory Receptor Expression on Effector T Cells as Early Indicators of Relapse Following Autologous Stem Cell Transplantation for Multiple Myeloma

    Get PDF
    The benefit of autologous stem cell transplantation (ASCT) in newly diagnosed myeloma patients, apart from supporting high dose chemotherapy, may include effects on T cell function in the bone marrow (BM). We report our exploratory findings on marrow infiltrating T cells early post-ASCT (day+100), examining phenotype and T cell receptor (TCR) repertoire, seeking correlations with timing of relapse. Compared to healthy donors (HD), we observed an increase in regulatory T cells (CD4+FoxP3+, Tregs) with reduction in CD4 T cells, leading to lower CD4:8 ratios. Compared to paired pre-treatment marrow, both CD4 and CD8 compartments showed a reduction in naïve, and increase in effector memory subsets, suggestive of a more differentiated phenotype. This was supported by increased levels of several immune-regulatory and activation proteins (ICOS, PD-1, LAG-3, CTLA-4 and GzmB) when compared with HD. Unsupervised analysis identified a patient subgroup with shorter PFS (p=0.031) whose BM contained increased Tregs, and higher immune-regulatory markers (ICOS, PD-1, LAG-3) on effector T cells. Using single feature analysis, higher frequencies of marrow PD-1+ on CD4+FoxP3- cells and Ki67+ on CD8 cells were independently associated with early relapse. Finally, studying paired pre-treatment and post-ASCT BM (n=5), we note reduced abundance of TCR sequences at day+100, with a greater proportion of expanded sequences indicating a more focused persistent TCR repertoire. Our findings indicate that, following induction chemotherapy and ASCT, marrow T cells demonstrate increased activation and differentiation, with TCR repertoire focusing. Pending confirmation in larger series, higher levels of immune-regulatory proteins on T cell effectors at day+100 may indicate early relapse

    BMC Nephrol

    Get PDF
    Background Early kidney transplantation (KT) is the best option for patients with end-stage kidney disease, but little is known about dialysis access strategy in this context. We studied practice patterns of dialysis access and how they relate with outcomes in adults wait-listed early for KT according to the intended donor source. Methods This study from the REIN registry (2002–2014) included 9331 incident dialysis patients (age 18–69) wait-listed for KT before or by 6 months after starting dialysis: 8342 candidates for deceased-donor KT and 989 for living-donor KT. Subdistribution hazard ratios (SHR) of KT and death associated with hemodialysis by catheter or peritoneal dialysis compared with arteriovenous (AV) access were estimated with Fine and Gray models. Results Living-donor candidates used pretransplant peritoneal dialysis at rates similar to deceased-donor KT candidates, but had significantly more frequent catheter than AV access for hemodialysis (adjusted OR 1.25; 95%CI 1.09–1.43). Over a median follow-up of 43 (IQR: 23–67) months, 6063 patients received transplants and 305 died before KT. Median duration of pretransplant dialysis was 15 (7–27) months for deceased-donor recipients and 9 (5–15) for living-donor recipients. Catheter use in deceased-donor candidates was associated with a lower SHR for KT (0.88, 95%CI 0.82–0.94) and a higher SHR for death (1.53, 95%CI 1.14–2.04). Only five deaths occurred in living-donor candidates, three of them with catheter use. Conclusions Pretransplant dialysis duration may be quite long even when planned with a living donor. Advantages from protecting these patients from AV fistula creation must be carefully evaluated against catheter-related risks

    Rapid synchronous type 1 IFN and virus-specific T cell responses characterize first wave non-severe SARS-CoV-2 infections

    Get PDF
    Effective control of SARS-CoV-2 infection on primary exposure may reveal correlates of protective immunity to future variants, but we lack insights into immune responses before or at the time virus is first detected. We use blood transcriptomics, multiparameter flow cytometry, and T cell receptor (TCR) sequencing spanning the time of incident non-severe infection in unvaccinated virus-naive individuals to identify rapid type 1 interferon (IFN) responses common to other acute respiratory viruses and cell proliferation responses that discriminate SARS-CoV-2 from other viruses. These peak by the time the virus is first detected and sometimes precede virus detection. Cell proliferation is most evident in CD8 T cells and associated with specific expansion of SARS-CoV-2-reactive TCRs, in contrast to virus-specific antibodies, which lag by 1–2 weeks. Our data support a protective role for early type 1 IFN and CD8 T cell responses, with implications for development of universal T cell vaccines

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    Viscerotropic disease: case definition and guidelines for collection, analysis, and presentation of immunization safety data

    Get PDF
    Viscerotropic disease (VTD) is defined as acute multiple organ system dysfunction that occurs following vaccination. The severity of VTD ranges from relatively mild multisystem disease to severe multiple organ system failure and death. The term VTD was first used shortly after the initial published reports in 2001 of febrile multiple organ system failure following yellow fever (YF) vaccination. To date, VTD has been reported only in association with YF vaccine and has been thus referred to as YF vaccine-associated viscerotropic disease (YEL-AVD)

    Renal replacement therapy in Europe : A summary of the 2013 ERA-EDTA Registry Annual Report with a focus on diabetes mellitus

    Get PDF
    Publisher Copyright: © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA.Background: This article provides a summary of the 2013 European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report (available at http://www.era-edta-reg.org), with a focus on patients with diabetes mellitus (DM) as the cause of end-stage renal disease (ESRD). Methods: In 2015, the ERA-EDTA Registry received data on renal replacement therapy (RRT) for ESRD from 49 national or regional renal registries in 34 countries in Europe and bordering the Mediterranean Sea. Individual patient datawere provided by 31 registries, while 18 registries provided aggregated data. The total population covered by the participating registries comprised 650 million people. Results: In total, 72 933 patients started RRT for ESRD within the countries and regions reporting to the ERA-EDTA Registry, resulting in an overall incidence of 112 per million population (pmp). The overall prevalence on 31 December 2013was 738 pmp (n = 478 990). Patients with DM as the cause of ESRD comprised 24% of the incident RRT patients (26 pmp) and 17% of the prevalent RRT patients (122 pmp).Whencompared with the USA, the incidence of patients starting RRTpmpsecondary toDMin Europe was five times lower and the incidence of RRT due to other causes of ESRD was two times lower. Overall, 19 426 kidney transplants were performed (30 pmp). The 5-year adjusted survival for all RRT patients was 60.9% [95% confidence interval (CI) 60.5-61.3] and 50.6% (95% CI 49.9-51.2) for patients with DM as the cause of ESRD.publishersversionPeer reviewe

    A Simple Model for the Influence of Meiotic Conversion Tracts on GC Content

    Get PDF
    A strong correlation between GC content and recombination rate is observed in many eukaryotes, which is thought to be due to conversion events linked to the repair of meiotic double-strand breaks. In several organisms, the length of conversion tracts has been shown to decrease exponentially with increasing distance from the sites of meiotic double-strand breaks. I show here that this behavior leads to a simple analytical model for the evolution and the equilibrium state of the GC content of sequences devoid of meiotic double-strand break sites. In the yeast Saccharomyces cerevisiae, meiotic double-strand breaks are practically excluded from protein-coding sequences. A good fit was observed between the predictions of the model and the variations of the average GC content of the third codon position (GC3) of S. cerevisiae genes. Moreover, recombination parameters that can be extracted by fitting the data to the model coincide with experimentally determined values. These results thus indicate that meiotic recombination plays an important part in determining the fluctuations of GC content in yeast coding sequences. The model also accounted for the different patterns of GC variations observed in the genes of Candida species that exhibit a variety of sexual lifestyles, and hence a wide range of meiotic recombination rates. Finally, the variations of the average GC3 content of human and chicken coding sequences could also be fitted by the model. These results suggest the existence of a widespread pattern of GC variation in eukaryotic genes due to meiotic recombination, which would imply the generality of two features of meiotic recombination: its association with GC-biased gene conversion and the quasi-exclusion of meiotic double-strand breaks from coding sequences. Moreover, the model points out to specific constraints on protein fragments encoded by exon terminal sequences, which are the most affected by the GC bias

    Analysis of meiotic recombination in 22q11.2, a region that frequently undergoes deletions and duplications

    Get PDF
    BACKGROUND: The 22q11.2 deletion syndrome is the most frequent genomic disorder with an estimated frequency of 1/4000 live births. The majority of patients (90%) have the same deletion of 3 Mb (Typically Deleted Region, TDR) that results from aberrant recombination at meiosis between region specific low-copy repeats (LCRs). METHODS: As a first step towards the characterization of recombination rates and breakpoints within the 22q11.2 region we have constructed a high resolution recombination breakpoint map based on pedigree analysis and a population-based historical recombination map based on LD analysis. RESULTS: Our pedigree map allows the location of recombination breakpoints with a high resolution (potential recombination hotspots), and this approach has led to the identification of 5 breakpoint segments of 50 kb or less (8.6 kb the smallest), that coincide with historical hotspots. It has been suggested that aberrant recombination leading to deletion (and duplication) is caused by low rates of Allelic Homologous Recombination (AHR) within the affected region. However, recombination rate estimates for 22q11.2 region show that neither average recombination rates in the 22q11.2 region or within LCR22-2 (the LCR implicated in most deletions and duplications), are significantly below chromosome 22 averages. Furthermore, LCR22-2, the repeat most frequently implicated in rearrangements, is also the LCR22 with the highest levels of AHR. In addition, we find recombination events in the 22q11.2 region to cluster within families. Within this context, the same chromosome recombines twice in one family; first by AHR and in the next generation by NAHR resulting in an individual affected with the del22q11.2 syndrome. CONCLUSION: We show in the context of a first high resolution pedigree map of the 22q11.2 region that NAHR within LCR22 leading to duplications and deletions cannot be explained exclusively under a hypothesis of low AHR rates. In addition, we find that AHR recombination events cluster within families. If normal and aberrant recombination are mechanistically related, the fact that LCR22s undergo frequent AHR and that we find familial differences in recombination rates within the 22q11.2 region would have obvious health-related implications
    corecore