5,287 research outputs found

    Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    Get PDF
    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined

    Satellite antenna management system and method

    Get PDF
    The antenna management system and method allow a satellite to communicate with a ground station either directly or by an intermediary of a second satellite, thus permitting communication even when the satellite is not within range of the ground station. The system and method employ five major software components, which are the control and initialization module, the command and telemetry handler module, the contact schedule processor module, the contact state machining module, and the telemetry state machine module. The control and initialization module initializes the system and operates the main control cycle, in which the other modules are called. The command and telemetry handler module handles communication to and from the ground station. The contact scheduler processor module handles the contact entry schedules to allow scheduling of contacts with the second satellite. The contact and telemetry state machine modules handle the various states of the satellite in beginning, maintaining and ending contact with the second satellite and in beginning, maintaining and ending communication with the satellite

    Deep learning for inferring cause of data anomalies

    Get PDF
    Daily operation of a large-scale experiment is a resource consuming task, particularly from perspectives of routine data quality monitoring. Typically, data comes from different sub-detectors and the global quality of data depends on the combinatorial performance of each of them. In this paper, the problem of identifying channels in which anomalies occurred is considered. We introduce a generic deep learning model and prove that, under reasonable assumptions, the model learns to identify 'channels' which are affected by an anomaly. Such model could be used for data quality manager cross-check and assistance and identifying good channels in anomalous data samples. The main novelty of the method is that the model does not require ground truth labels for each channel, only global flag is used. This effectively distinguishes the model from classical classification methods. Being applied to CMS data collected in the year 2010, this approach proves its ability to decompose anomaly by separate channels.Comment: Presented at ACAT 2017 conference, Seattle, US

    The heritability of BMI varies across the range of BMI-a heritability curve analysis in a twin cohort

    Get PDF
    Background The heritability of traits such as body mass index (BMI), a measure of obesity, is generally estimated using family and twin studies, and increasingly by molecular genetic approaches. These studies generally assume that genetic effects are uniform across all trait values, yet there is emerging evidence that this may not always be the case. Method/Subjects This paper analyzes twin data using a recently developed measure of heritability called the heritability curve. Under the assumption that trait values in twin pairs are governed by a flexible Gaussian mixture distribution, heritability curves may vary across trait values. The data consist of repeated measures of BMI on 1506 monozygotic (MZ) and 2843 like-sexed dizygotic (DZ) adult twin pairs, gathered from multiple surveys in older Finnish Twin Cohorts. Results The heritability curve and BMI value-specific MZ and DZ pairwise correlations were estimated, and these varied across the range of BMI. MZ correlations were highest at BMI values from 21 to 24, with a stronger decrease for women than for men at higher values. Models with additive and dominance effects fit best at low and high BMI values, while models with additive genetic and common environmental effects fit best in the normal range of BMI. Conclusions We demonstrate that twin and molecular genetic studies need to consider how genetic effects vary across trait values. Such variation may reconcile findings of traits with high heritability and major differences in mean values between countries or over time.Peer reviewe

    Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals

    Full text link
    We report the results of a search for axions from the 14.4 keV M1 transition from Fe-57 in the core of the sun using the axio-electric effect in TeO2 bolometers. The detectors are 5x5x5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg d of data was made using a newly developed low energy trigger which was optimized to reduce the detectors energy threshold. An upper limit of 0.63 c kg-1 d-1 was established at 95% C.L.. From this value, a lower bound at 95% C.L. was placed on the Peccei-Quinn energy scale of fa >= 0.76 10**6 GeV for a value of S=0.55 for the flavor-singlet axial vector matrix element. Bounds are given for the interval 0.15 < S < 0.55.Comment: 14 pages, 6 figures, submitted to JCA

    CUPID-0: the first array of enriched scintillating bolometers for 0decay investigations

    Get PDF
    The CUPID-0 detector hosted at the Laboratori Nazionali del Gran Sasso, Italy, is the first large array of enriched scintillating cryogenic detectors for the investigation of82Se neutrinoless double-beta decay (0). CUPID-0 aims at measuring a background index in the region of interest (RoI) for 0at the level of 10- 3 counts/(keV kg years), the lowest value ever measured using cryogenic detectors. CUPID-0 operates an array of Zn82Se scintillating bolometers coupled with bolometric light detectors, with a state of the art technology for background suppression and thorough protocols and procedures for the detector preparation and construction. In this paper, the different phases of the detector design and construction will be presented, from the material selection (for the absorber production) to the new and innovative detector structure. The successful construction of the detector lead to promising preliminary detector performance which is discussed here

    CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy

    Get PDF
    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130^{130}Te. With 741 kg of TeO2_2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6×10261.6\times 10^{26} y at 1σ1\sigma (9.5×10259.5\times10^{25} y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130^{130}Te and possibly other double beta decay candidate nuclei.Comment: Submitted to the Proceedings of TAUP 2013 Conferenc

    Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    Get PDF
    Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0nubb decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0nubb experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.Comment: 22 pages, 15 figures, submitted to EPJ

    Validation of techniques to mitigate copper surface contamination in CUORE

    Get PDF
    In this article we describe the background challenges for the CUORE experiment posed by surface contamination of inert detector materials such as copper, and present three techniques explored to mitigate these backgrounds. Using data from a dedicated test apparatus constructed to validate and compare these techniques we demonstrate that copper surface contamination levels better than 10E-07 - 10E-08 Bq/cm2 are achieved for 238U and 232Th. If these levels are reproduced in the final CUORE apparatus the projected 90% C.L. upper limit on the number of background counts in the region of interest is 0.02-0.03 counts/keV/kg/y depending on the adopted mitigation technique.Comment: 10 pages, 6 figures, 6 table
    corecore