15 research outputs found

    Optimisation of a weightless neural network using particle swarms

    Get PDF
    Among numerous pattern recognition methods the neural network approach has been the subject of much research due to its ability to learn from a given collection of representative examples. This thesis is concerned with the design of weightless neural networks, which decompose a given pattern into several sets of n points, termed n-tuples. Considerable research has shown that by optimising the input connection mapping of such n-tuple networks classification performance can be improved significantly. In this thesis the application of a population-based stochastic optimisation technique, known as Particle Swarm Optimisation (PSO), to the optimisation of the connectivity pattern of such “n-tuple” classifiers is explored. The research was aimed at improving the discriminating power of the classifier in recognising handwritten characters by exploiting more efficient learning strategies. The proposed "learning" scheme searches for ‘good’ input connections of the n-tuples in the solution space and shrinks the search area step by step. It refines its search by attracting the particles to positions with good solutions in an iterative manner. Every iteration the performance or fitness of each input connection is evaluated, so a reward and punishment based fitness function was modelled for the task. The original PSO was refined by combining it with other bio-inspired approaches like Self-Organized Criticality and Nearest Neighbour Interactions. The hybrid algorithms were adapted for the n-tuple system and the performance was measured in selecting better connectivity patterns. The Genetic Algorithm (GA) has been shown to be accomplishing the same goals as the PSO, so the performances and convergence properties of the GA were compared against the PSO to optimise input connections. Experiments were conducted to evaluate the proposed methods by applying the trained classifiers to recognise handprinted digits from a widely used database. Results revealed the superiority of the particle swarm optimised training for the n-tuples over other algorithms including the GA. Low particle velocity in PSO was favourable for exploring more areas in the solution space and resulted in better recognition rates. Use of hybridisation was helpful and one of the versions of the hybrid PSO was found to be the best performing algorithm in finding the optimum set of input maps for the n-tuple network

    Drone Forensic Analysis Using Open Source Tools

    Get PDF
    Carrying capabilities of drones and their easy accessibility to public have led to an increase in crimes committed using drones in recent years. For this reason, the need for forensic analysis of drones captured from the crime scenes and the devices used for these drones is also paramount. This paper presents the extraction and identification of important artefacts from the recorded flight data as well as the associated mobile devices using open source tools and some basic scripts developed to aid the analysis of two popular drone systems- the DJI Phantom 3 Professional and Parrot AR. Drone 2.0. Although different drones vary in their operations, this paper extends the extraction and analysis of the data from the drones and associated devices using some generic methods which are forensically sound adhering to the guidelines of the Association of Chief Police Officers (ACPO)

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation

    Progressive web app for real-time doctor-patient communication and searchable health conditions

    No full text
    During the global pandemic, it became evident that remote healthcare is becoming increasingly important. Despite their functional features, designs, and accessibility, existing telehealth apps and websites can be costly to develop since they need to be written separately for each platform. A Progressive Web App provides the ability to develop an app which can be platform independent, which means it can be created with a single source code but run on a variety of devices. This paper reports development of a progressive web app which offers a secure platform to access up-to-date healthcare information, as well as offering real-time communication between patients and doctors. Details about the system architecture, features, and functionalities of the app, both online and offline, have been discussed from the perspective of the developers, as well as their advantages to end users

    Automatic identification of non-biting midges (Chironomidae) using object detection and deep learning techniques

    No full text
    This paper introduces an automated method for the identification of chironomid larvae mounted on microscope slides in the form of a computer-based identification tool using deep learning techniques. Using images of chironomid head capsules, a series of object detection models were created to classify three genera. These models were then used to show how pre-training preparation could improve the final performance. The model comparisons included two object detection frameworks (Faster-RCNN and SSD frameworks), three balanced image sets (with and without augmentation) and variations of two hyperparameter values (Learning Rate and Intersection Over Union). All models were reported using mean average precision or mAP. Multiple runs of each model configuration were carried out to assess statistical significance of the results. The highest mAP value achieved was 0.751 by Faster-RCNN. Statistical analysis revealed significant differences in mAP values between the two frameworks. When experimenting with hyperparameter values, the combination of learning rates and model architectures showed significant relationships. Although all models produced similar accuracy results (94.4% - 97.8%), the confidence scores varied widely

    Transformer-based Models for Enhanced Amur Tiger Re-Identification

    No full text
    Rapid urban growth, with its profound impact on natural habitats, intensifies the global risk faced by many wildlife species, driving them closer to the brink of extinction due to factors like habitat destruction, illegal hunting, and the challenges posed by climate change. The urgency of this situation is highlighted by the current status of the Amur tigers, emphasising the need for continuous observation to ensure their survival. Within this context, re-identification (Re-ID) emerges as the method for recognising individual entities based on previously captured data. This study is dedicated to the re-identification of Amur tigers, employing the Amur Tiger Re-identification in the Wild (ATRW) dataset and placing a significant emphasis on assessing various deep learning architectures, particularly focusing on transformer-based models. Several neural network architectures, including Vision Transformer (ViT), Multiple Granularity Network (MGN), and Neighbor Transformer (NFormer), were explored. The results indicate that transformer-based methods hold substantial promise for further advancements in re-identification tasks. Notably, the ViT model achieved an impressive mAP score of 80.8, while the combination of ViT with MGN yielded an exceptional mAP of 83.4, surpassing the best benchmark method by an 9.3% in a single-camera scenario. Additionally, the NFormer architecture demonstrated comparable results, boasting a mAP score of 81.1

    Tele-tDCS: A Novel Tele-neuromodulation Framework using Internet of Medical Things

    No full text
    As part of the Internet of Medical Things (IoMT) within Biomedical Engineering, telehealth is an emerging field. Due to the recent events surrounding COVID-19, it has become obvious that Telehealth treatments must be developed as a means of protecting vulnerable patients in hospitals by reducing the need to visit and therefore reducing risk to physicians. This paper investigates the feasibility of developing a non-invasive remote neuro-stimulation system using internet-based transcranial Direct Current Stimulation (tDCS). A hardware-based prototype tDCS device has been developed to be controlled using a remote command-line interface over the internet. As a result, a physician can remotely set the parameters for the tDCS treatment and monitor the treatment in real-time to ensure patient safety. In this study, the feasibility of a Tele-tDCS system was investigated, as well as the capabilities a Tele-tDCS system should offer to patients

    A qualitative review of educational robots for STEM: Technical features and impacts

    No full text
    Educational robots have played a vital role in enhancing science and engineering education for children worldwide. There are several educational robots available to boost students’ mindsets in STEM fields through a variety of activities. The robots are equipped with sensors, actuators, and programming platforms to improve students’ technical and professional skills, but most are not affordable and accessible to school students, especially those from lower and middle-income countries. The purpose of this paper is to discuss the importance and significance of robots in STEM education through a qualitative review of a wide range of educational robots including their sensors, actuators, outputs, and embedded systems. The use of these robots in educational activities has proven to be intriguing, and research is thriving to make them more affordable and accessible while keeping educational objectives at forefront. Humanoid social robots with emotional attributes have been found appealing to improve student learning in a school setting by enhancing their engagement in the environment. This paper also discusses how education robots impact students’ technical and professional experience
    corecore