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Abstract
Among numerous pattern recognition methods the neural network approach has been the 

subject of much research due to its ability to learn from a given collection of representative 

examples. This thesis is concerned with the design of weightless neural networks, which 

decompose a given pattern into several sets of n points, termed n-tuples. Considerable 

research has shown that by optimising the input connection mapping of such n-tuple 

networks classification performance can be improved significantly. In this thesis the 

application of a population-based stochastic optimisation technique, known as Particle 

Swarm Optimisation (PSO), to the optimisation of the connectivity pattern of such “n-tuple” 

classifiers is explored.

The research was aimed at improving the discriminating power of the classifier in 

recognising handwritten characters by exploiting more efficient learning strategies. The 

proposed "learning" scheme searches for ‘good’ input connections of the n-tuples in the 

solution space and shrinks the search area step by step. It refines its search by attracting the 

particles to positions with good solutions in an iterative manner. Every iteration the 

performance or fitness of each input connection is evaluated, so a reward and punishment 

based fitness function was modelled for the task. The original PSO was refined by combining 

it with other bio-inspired approaches like Self-Organized Criticality and Nearest Neighbour 

Interactions. The hybrid algorithms were adapted for the n-tuple system and the performance 

was measured in selecting better connectivity patterns. The Genetic Algorithm (GA) has been 

shown to be accomplishing the same goals as the PSO, so the performances and convergence 

properties of the GA were compared against the PSO to optimise input connections.

Experiments were conducted to evaluate the proposed methods by applying the 

trained classifiers to recognise handprinted digits from a widely used database. Results 

revealed the superiority of the particle swarm optimised training for the n-tuples over other 

algorithms including the GA. Low particle velocity in PSO was favourable for exploring 

more areas in the solution space and resulted in better recognition rates. Use of hybridisation 

was helpful and one of the versions of the hybrid PSO was found to be the best performing 

algorithm in finding the optimum set of input maps for the n-tuple network.
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Chapter 1 

Introduction

1.1 General Introduction and Motivation
Pattern recognition as a field is extremely diversified and has been applied in many 

areas such as science, engineering, business, medicine etc. The aim of pattern 

recognition is to classify objects into identifiable categories or classes after extracting 

features from the data. This data may be numerical, pictorial, textural, linguistic or 

any combination o f these categories. Numerous techniques for pattern recognition 

can be investigated in four general approaches of pattern recognition, as suggested in 

[Jain et al. 2000]: template matching, statistical techniques, structural techniques and 

neural networks (NNs). The template matching technique is based on matching the 

stored prototypes against the pattern to be recognized. Statistical technique is based 

on the assumption that there is an underlying and quantifiable statistical basis for 

generation o f the patterns. In structural technique the underlying structure of the 

pattern provides the information fundamental for recognition. The neural 

classification emulates the computational paradigm of the behaviour of neurones and 

their interconnections in human brain. Instead o f recognizing a pattern by following a 

set of human-designed rules, as in the structural approaches, neural nets learn the
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underlying rules from a given collection of representative examples. Among neural 

network models, the weightless or n-tuple form of network [Bledsoe and Browning, 

1959] stands out due to its own advantages over a variety of pattern recognition 

algorithms [Rohwer and Morciniec, 1998]. Considerable research activity has focused 

on the n-tuple method, both regarding theoretical issues [Rohwer and Morciniec, 

1998; Jorgensen and Linneberg, 1999] as well as applications to real-world tasks 

[Rohwer and Cressy, 1989]. Several applications of n-tuple-based networks to 

handwritten character recognition tasks have been reported. Recognition of 

handwritten characters by a computer has been a topic o f extensive research for many 

years [Govindan and Shivaprasad, 1990; Mori et al., 1992; Nagy,1988], It plays 

important role in many applications such as postal address interpretation, bank 

checks, tax forms and census forms reading.

The n-tuple method decomposes a given pattern into several sets of n points, 

termed n-tuples. The classifier stores class-specific information about the training set 

in a number o f look-up tables .The entries in each look-up table are addressed by 

sampling n specific data locations of the input that constitutes a ‘feature’ of the 

pattern. A pattern is classified as belonging to the class for which it has the most 

features in common with at least one training pattern of that class. The input 

connection mapping of the n-tuple classifier determines the sampling and defines the 

locations of the pattern matrix. There will be a vast number o f possible connections 

for a matrix with the dimension like 32 by 32. The classification and generalization 

performance are highly dependent on these input mappings [Bishop, 1990; Jorgensen 

et al., 1995], A random map is suitable for an un-optimised problem as it samples the 

point throughout the pattern matrix [Aleksander and Stonham, 1979], Considerable 

research shows that by optimising the connections classification performance can be 

improved significantly [Bishop, 1990; Jorgensen et al., 1995; Garcia, 2003]. 

Stochastic search algorithms like Particle Swarm [Kennedy and Eberhart, 1995] and
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Genetic Algorithm [Holland, 1975] are used to find near-optimal solutions. This is 

achieved by assuming that good solutions are close to each other in the search space. 

This assumption is valid for most real world problems [Lovbjerg, 2002; Spall, 2003].

Particle swarm is a population based stochastic optimisation technique 

developed by Eberhart and Kennedy in 1995, motivated from the simulation of social 

behaviour of bird flocking or fish schooling. The particle swarm searches optima in 

the solution space and shrinks the search area step by step. It refines its search by 

attracting the particles to positions with good solutions. In a population based search 

each individual’s performance is measured by a fitness function [Holland, 1975]. One 

advantage of Particle Swarm Optimisation (PSO) is that it can deal with a large 

number of problem parameters and no rigid assumption about the problem is 

necessary. PSO provides intermediate results at any time during the computation. So 

it can be stopped at any time depending on the precision wanted. Being successfully 

applied in many areas like function optimisation, artificial neural network training 

[Parsopoulos and Vrahatis, 2001b; Settles et al., 2002] or fuzzy system control 

[Esmin et al., 2002], the PSO seems to be a good candidate to find an optimal set of 

input maps for the n-tuple network.

Although, in general, PSO results good solutions, in high-dimensional spaces 

it might stumble on local minima [Kalyan et al., 2003]. In order to be less susceptible 

to premature convergence, the maintenance o f “diversity” in particle swarm is 

important [Kalyan et al., 2003; Lovbjerg and Krink, 2002], One way to add diversity 

in PSO is to use the Self-Organized Criticality (SOC) [Bak, 1996], Self-organized 

criticality has been found in a variety of phenomena such as earthquakes, volcanic 

activity, the game of life, landscape formation and stock markets. SOC describes how 

small amounts o f external influence can occasionally lead to the big changes 

observed in complex systems. Extending the PSO with SOC seems very promising 

reaching faster convergence and better solutions [Lovbjerg and Krink, 2002] and the
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resulting algorithm can be named as SOC-PSO. An alternative way o f improving the 

PSO is by hybridising it with a technique which considers the neighbourhood 

interactions that is naturally observed and expected in animal behaviour [Kalyan et 

al., 2003]. A significant modification in particle dynamics is required to introduce the 

effects o f multiple other particles in each particle. [Kalyan et al., 2003] proposed a 

method where each particle is moved towards other nearby particles with a more 

successful search history, instead of just the best position discovered so far. The 

proposed algorithm is described as Fitness-Distance-Ratio (FDR) based PSO (FDR- 

PSO) and it selects an influential particle, which satisfies the fact that it must be near 

the particle being updated and it should have visited a position of higher fitness.

1.2 Thesis Scope
This thesis investigates the application o f an efficient optimisation method, known as 

Particle Swarm Optimisation, to optimise the connectivity pattern of an n-tuple 

classifier. The research will aim to improve the discriminating power of the classifier 

in recognising patterns by exploiting more efficient learning. The "learning" scheme 

will select ‘good’ input connections of the n-tuples in an iterative manner. At each 

iteration the performance or fitness of each input connection will be evaluated, so a 

fitness function will be formulated. Development of PSO on n-tuple systems will be 

explained in detail. The original PSO can be refined by combining it with other bio

inspired approaches like Self-Organized Criticality and Nearest Neighbour 

Interactions [Kalyan et al., 2003], The hybrid PSO algorithms will be applied to 

optimise the n-tuple network. The performance of the hybrid system will be 

investigated. The Genetic Algorithm has proven to be accomplishing the same goal as 

the PSO [Kennedy and Spears, 1998], so the foundations, performances and 

convergence properties o f the GA and PSO will be compared to select the optimum 

set of n-tuples. Different parameter settings of all bio-inspired approaches will be
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examined. The performance of the optimised network will be measured in 

recognizing handwritten characters from the NIST [Wilkinson et al., 1992] database. 

The character recognition research can be classified based upon two major criteria: 1) 

the data acquisition process (on-line or off-line) and 2) the text type (machine-printed 

or handwritten). The off-line handwritten character recognition has been selected as 

the application domain of this research as it is relatively more complex compared to 

on-line and machine-printed recognition [Anca and Yarman-Vural, 2001]. Due to 

computational extensive nature of the simulations and also the stochastic nature of the 

proposed algorithms, all presented results in this thesis will be taken over several test 

runs. Statistical analysis like Student’s t-test will be performed to explore the 

significance of the results.

1.3 Original Contribution
The main contributions of this thesis are:

• The adaptation of the Reward and Punishment (RnP) based performance 

measure to the evaluation of connectivity patterns of the n-tuple network.

• The development of a new stochastic search strategy so that more time is 

given to finding features for a difficult class than an easily recognisable class.

• The application o f the particle swarm intelligence in finding an optimum set 

of input connections to an n-tuple classifier.

• The adaptation of the Self Organised Criticality algorithm for n-tuples and to 

extend the original PS algorithm with the SOC in exploring better 

connectivity patterns to n-tuples.

• The application of the hybrid PSO and Fitness-to-Distance-Ratio based 

algorithm in finding better n-tuples.
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• A novel hybridisation of the SOC, PSO and FDR algorithm to form the SOC- 

FDR-PSO to optimise the n-tuple classifier.

• The evaluation of the efficiency of all proposed methods by applying the 

trained classifier to recognise handprinted digits from the well-known and 

widely used NIST database.

• and the comparison o f the performance of Particle Swarm optimised training 

for the n-tuples with other algorithms including Genetic Algorithm based 

training.

1.4 Thesis Outline

In addition to this introductory chapter the thesis consists of seven more chapters and 

two appendices. Chapter 5 to Chapter 7 represents the core o f the thesis whereas 

Chapter 2 to 4 describes the background knowledge, experimental framework and 

literature reviews of related works. The organization o f the work is as follows:

Chapter 2 Optimisation Algorithms

This chapter briefly reviews the subject of optimisation. Traditional and 

stochastic optimisation methods will be discussed first. This will be followed by the 

discussion in Evolutionary Computation with more emphasis on Genetic Algorithms. 

Different controlling parameters of GA will be discussed. The area o f swarm 

intelligence will be described next. An elaborated discussion o f particle swarm 

optimisation and its various modification will be presented. In order to provide a 

complete coverage of swarm intelligence background, a brief overview of another 

swarm intelligence model, Ant colony Systems, will be given.

Chapter 3 The n-tuple Classifier

This chapter discusses the field of artificial neural networks with the emphasis

on weightless approach. Learning in neural networks will be briefly introduced here.
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This will be followed by the description of the memory based n-tuple network. 

Network’s training and recognition techniques will be explained in detail. Different 

parameters controlling the performance of the n-tuple network will be addressed next. 

Finally the arguments behind optimising the connectivity pattern o f the n-tuple 

network will be discussed.

Chapter 4 Experimental Framework

This chapter introduces the experimental infrastructure of the research. The 

experimental procedures have been explained here. The database for the experiments 

has been described. Rationale has been given for choosing the NIST database for 

experiments. Reasons have been given for choosing the specific n-tuple size and 

number of tuples in the experiments. The importance o f using significance testing for 

the experiments has been explained and for this the Student’s t-test has been 

introduced. The use o f Box Plot has been described to facilitate statistical 

comparisons of results graphically. Finally this chapter mentions the list of software 

tools and programming language used in the experiments.

Chapter 5 Reward and Punishment

This chapter describes a stochastic tuple selection algorithm. The 

development of a measure of the ‘goodness’ o f a solution based on a Reward and 

Punishment concept has been introduced in this chapter. The equations and different 

parameters of the RnP measure have been explained. Experimental results on 

optimising the learning o f the n-tuple network by using the RnP based stochastic 

search have been presented in this chapter. The analysis o f the statistical significance 

of the results has been also included.

Chapter 6 Particle Swarm to Optimise n-tuples

This chapter introduces the implementation of Particle Swarm Optimisation 

on the n-tuple network. The learning algorithm by PSO has been elaborately
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explained. The affects of different controlling parameters on the performance of the 

PSO have been described. This is followed by the experimental results of 

optimisation by PSO and a comparison has been given with conventional approach 

and the RnP based approach. Later in the chapter the development o f a GA algorithm 

has been described. This is followed by the analysis of experimental results 

comparing the performances and convergence properties of the GA and PSO based 

search in selecting a set of optimum n-tuples. Finally this chapter explains how the 

speed of the search can be increased without noticing any significant loss in 

performance.

Chapter 7 Hybridising Particle Swarm

This chapter first describes the importance of the diversity required in particle 

swarm based optimisation. This is followed by the implementation of the Self 

Organised Criticality algorithm on n-tuple networks. The hybrid SOC-PSO algorithm 

and its parameters have been explained. Next a second bio-inspired algorithm named 

Fitness-to-Distance-Ratio has been introduced in favour of adding diversity in PSO. 

The combined FDR-PSO algorithm has been described. This is followed by the 

hybridisation of PSO with both FDR and SOC algorithms and the resulting algorithm 

has been presented as SOC-FDR-PSO. Finally experimental results have been given 

comparing performances of n-tuple networks trained by various hybrid approaches. 

The affects o f different parameters on the performance o f the network have been 

investigated in this chapter.

Chapter 8 Conclusion

This chapter highlights the conclusions o f this thesis and discusses direction 

for future research. A summary of what has been achieved in the thesis has been 

presented here.
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A list of publications derived from the work has been presented in Appendix 

A. Appendix B shows an example image of Handwriting Sample Form (HSF) of the 

NIST database. A subset of this database has been used in the experiments o f the 

research.
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Chapter 2

Optimisation Algorithms

2.1 Optimisation
Optimisation problems are very much a part o f pattern recognition and computer 

vision [Shang and Wah, 1996], Optimisation algorithms seek values for a set of 

parameters that maximize or minimize objective functions subject to certain 

constraints [Rardin, 1998; Van den Bergh, 2002], Any maximization problem can be 

converted into a minimization problem by taking the negative of the objective 

function, and vice versa. Three main ingredients for optimisation problems are: an 

objective function, a set of unknowns or variables and set of constraints that allow the 

unknowns to take on certain values but exclude others. A feasible solution is found 

when values for the set o f parameters satisfy all constraints. Feasible solutions with 

objective function value(s) as good as the values of any other feasible solutions are 

called optimal solutions [Rardin, 1998], An example of an optimisation problem is 

the device sizing in electronic design, which is the task o f choosing the width and 

length o f each device in an electronic circuit. Flere the variables represent the widths 

and lengths o f the devices. The constraints represent a variety of engineering 

requirements, such as limits on the device sizes imposed by the manufacturing
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process, timing requirements that ensure that the circuit can operate reliably at a 

specified speed, and a limit on the total area of the circuit. Optimisation techniques 

are used on a daily base for industrial planning, resource allocation, scheduling, 

decision making etc. Furthermore, optimisation techniques are widely used in many 

fields such as business, industry, engineering and computer science. Through active 

research in the field of optimisation new methods are regularly being developed 

[Chinneck, 2006].

Global optimisation is the task of finding the absolutely best set o f parameters 

to optimise an objective function. Depending on problems the best set can generate 

either the highest (for maximization problem) or lowest (for minimization problem) 

function value. In a local optimisation problem the highest or lowest function value 

stays in a finite neighbourhood. There are many local optimisation algorithms in the 

literature. For more detail the reader is referred to [Aarts and Lenstra, 2003] and 

[Korte and Vygen, 2002], Global optimisation problems are typically quite difficult to 

solve exactly and fall within the broader class of nonlinear programming (NLP) 

[Gray et al., 1997], More details about global optimisation can be found in [Pardalos 

et a l,  2002; Floudas and Pardalos, 1992; Florst et al., 2000], Remainder of this 

chapter has been organised as follows: next section will discuss about the traditional 

optimisation algorithms, Section 2.3 will introduce the stochastic approaches of 

optimisation. This will be followed by population based evolutionary algorithms for 

optimisations. Genetic algorithms and Particle Swarm Optimisation will be described 

in great detail.

2.2 Traditional Optimisation Algorithm
Traditional optimisation algorithms use exact methods to find the best solution. Exact 

methods involve more computational effort and usually require large amounts of 

computer memory. One exact method is exhaustive (or brute force) searching, where
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the algorithm produces the entire solution space for the problem so that the global 

optimal solution is guaranteed to be found. A brute force algorithm is often the least 

desirable choice because its cost is proportional to the number o f candidate solutions, 

which, in many practical problems, tends to grow very quickly as the size of the 

problem increases. Therefore, brute force search is typically used when the problem 

size is limited and is not appropriate for the class of problems known as NP-hard 

problems [Papadimitriou, 1994] that require an enormous (exponential) amount of 

computing power or time to be solved exactly. A problem is said to be NP-hard if it 

is solvable in polynomial time by a nondeterministic Turing machine [Turing, 1937], 

The time to exhaustively search an NP-hard problem increases exponentially with 

problem size.

Another exact method is Branch-and-Bound [Hendy and Penny, 1982], which 

deals with optimisation problems over a search space that can be presented as the 

leaves o f a search tree. It works when the search tree is monotonous - the score of 

each node in the search tree is at least as bad as that of any of its ancestors. Branch- 

and-Bound is guaranteed to find the optimal solution, but its complexity in the worst 

case is as high as that of exhaustive search. Other exact methods include linear 

programming and dynamic programming. More details about exact methods can be 

found in [Michalewicz and Fogel, 2000].

2.3 Stochastic Algorithms
Real world problems are normally NP-hard problems where real optimality condition 

is far too complex to be grasped by any particular method. In such cases it is desirable 

to find near optimal solutions with the assumption that good solutions are close to 

each other in the search space. This assumption is valid for most real world problems 

[Lovberg, 2002; Spall, 2003], A stochastic algorithm is a method that proceeds by 

taking a random walk in the search space with the objective of finding a near optimal
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solution, thus stochastic algorithms may fail to find a global optimal solution. While 

an exact algorithm generates a solution only after the run is completed, a stochastic 

algorithm can be stopped any time during the run and generate the best solution found 

so far [Lovberg 2002], The expected run time for stochastic algorithms is usually 

shorter than for exact ones, but the worst case run time will often be the same or 

longer. Stochastic search algorithms are easy to implement and suitable for many 

combinatorial problems (problems with discrete variable parameters). They can 

benefit from parallelism and can be used in a multiprocessor environment.

Figure 2.1 Hill-Climbing

Three major stochastic algorithms are Hill-Climbing [Michalewicz and Fogel, 

2000], Simulated Annealing [Van Laarhoven and Aarts, 1987] and Tabu search 

[Glover 1989; Glover 1990], Hill-Climbing exploits the analogy o f climbing hills 

(Figure 2.1) to find the optimum. It always looks for the next change which will 

improve the current state. In Hill-Climbing an initial candidate solution is generated 

randomly, the current solution. The technique then investigates its immediate
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neighbourhood to find a better solution. This process is repeated until no more 

improvement can be made. Hill-Climbing techniques differ from each other in the 

way they explore their neighbourhood and in the way they replace their candidate 

solution. Binary encoded Hill-Climbers can be set to explore every neighbouring 

point by flipping every bit one by one. Deterministic Hill-Climbing techniques, such 

as steepest ascent Hill-Climbing as shown in Figure 2.2, are easy to use but can get 

stuck in local optima. Because it can only go uphill, it cannot climb down a local 

peak to find a higher one. In stochastic Hill-Climbing techniques a weaker 

neighbouring solution can replace the candidate solution with a given probability, 

which gives the ability to escape local optima [Michalewicz and Fogel, 2000],

Objective
Function

State space -------------- ►

Figure 2.2 Local and Global maximum in solution space

Simulated Annealing (SA) [Van Laarhoven and Aarts, 1987] is a general 

purpose global optimisation technique for very large combinatorial problems. It is a 

stochastic search algorithm, which exploits an analogy between the way a metal cools 

and freezes into a minimal energy crystalline structure (the annealing process) and the

Global
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search for an optimum solution in a search process. In SA the probability of 

replacement of the current solution by a weaker solution depends on a temperature 

value. If temperature decreases over time the probability of changing to a lower 

energy state also goes down [Salman, 1999]. SA allows downhill movements (Figure 

2.2) to be made and thus can escape from local optima and find the global optima.

Tabu search (TS) is a heuristic search algorithm [Glover, 1986], which makes 

use of some memory of the states that has already been investigated. The algorithm 

does not re-visit those states. Unlike hill climbing here inferior solutions are selected 

if  better solutions are in the memory, thus, TS avoids being trapped in a local 

optimum. The moves that are not allowed to be re-visited are held in a list and these 

moves are called ‘tabu’. The tabu list is used to avoid the search getting into a loop by 

continually searching the same area without actually making any progress [Gabarro, 

2000]. Tabu search starts with a randomly chosen current solution. A set o f test 

solutions is generated via moves from the current solution. The best test solution is 

set as the current solution if it is not in the tabu list, or if  it is in the tabu list, but 

satisfies an aspiration criterion [Salhi, 2002], A common aspiration criterion could be 

to accept a move that results in better solution than the best solution so far. Another 

aspiration criteria could be a move favouring more drastically different solutions. 

Difference could be based on distance in search space or based on difference in the 

value of objective function compared to the current best solution.

2.4 Evolutionary Computation
Evolutionary Computation (EC) is a robust and powerful stochastic search 

mechanism inspired by biology [Back, 1992; 1994; Kim and Myung, 1997; Back et 

al., 1996; 1997a; 1997b; Collins, 1998; Fogel, 1994; 1995; Spears et al. 1993], EC 

differ from other optimisation methods, such as Hill-Climbing and Simulated 

Annealing, in the fact that in EC a population of potential solutions to a problem is
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maintained, and not just one solution [Engelbrecht, 2002; Salman, 1999], By 

repeatedly applying the evolutionary operators to the current population at each 

generation, a new population of individuals with better performance is created to 

search the space o f potential solutions. The dominant methodologies of evolutionary 

computing are evolutionary programming (EP) evolutionary strategies (ES) and 

Genetic Algorithm (GA). GAs have been successfully applied in many areas such as 

pattern recognition, image processing, machine learning, etc. [Goldberg, 1989], In 

many cases GAs perform better than EP and ESs. However, EP and ESs usually 

converge better than GAs for real valued function optimisation [Yao, 1997].

t = 0; /* Initial Generation V 

populationinitialise(t); 

evaluation(t); 

repeat

t=t+l; /* Next Generation */ 

select_parents(t); 

crossover(t); 

mutate(t); 

evaluate(t); 

sur\nvors_selection(t); 

until best individual meets criterion;

Figure 2.3 Pseudo-code of Genetic Algorithm

32



2.5 Genetic Algorithm
Genetic Algorithms are search algorithms utilising the mechanics of Darwinian 

natural selection and genetics. GA performs well on many different types of problems 

and they are less susceptible to getting stuck at local optima than a gradient search 

methods. GAs introduced by John Holland [Holland, 1975] are adaptive search 

strategies based on a highly abstract model of biological evolution to find a possible 

solution in a given problem space. This space, referred to as the search space, 

comprises all possible solutions to the problem at hand. Figure 2.3 outlines a typical 

genetic algorithm. A population o f individual structures is initialised and then 

evolved from generation t to generation t + /  by repeated applications of fitness 

evaluation, selection, recombination and mutation. Initial population of 

individuals is generated at random or heuristically. Every evolutionary step 

(generation), the individuals in the current population evaluated according to some 

predefined quality criterion, referred to as the fitness, which is equated with 

goodness of solution. Genetic algorithms are stochastic iterative processes that are 

not guaranteed to converge; the termination condition may be specified as some 

fixed, maximal number o f generations or as the attainment of an acceptable fitness 

level. Gene representation, fitness or objective function and genetic operators are the 

three most important aspects o f using GA.

2.5.1 Gene Representation

Individual structures in the population are encoded by chromosomes or genotypes, 

which may be represented by strings o f bits (bit strings), where a single bit encodes a 

gene. This is known as binary encoding. The different values a gene can take are 

called alleles. The characteristics or features o f each feasible solution are called as 

phenotype. Some of the non-binary representations o f genes include floating point 

[Janikow and Michalewicz, 1991], integer [Bramlette, 1991], graycoded [Rana and

33



Whitley, 1998] and matrix [Michalewicz, 1996] type. For more detail about gene 

representations please see [Goldberg, 1989], Uniform evolutionary operators can be 

used with binary representation for any problem [Van den Bergh, 2002], but for non

binary genes need different evolutionary operators for each representation.

2.5.2 Fitness function

The object or fitness function defines how good each solution or individual is. One of 

the key aspects for Genetic Algorithm’s success is the right choice of a fitness 

function that accurately quantifies the quality o f candidate solutions. Alongside good 

fitness, chromosome representation has to be correct to effectively solve a particular 

problem. These two parameters are problem dependent. A wrong selection of these 

two parameters will drastically affect the performance o f GAs. While optimising 

combinatorial problems by GA a situation might exist in the search space where 

fitness function do not map to feasible solutions. A solution to this problem could be 

use of a penalty term with the original fitness function, which will result in 

chromosomes with infeasible solutions and eventually they will disappear from the 

population [Fletcher, 2000],

2.5.3 Selection

Selection is the competition among individuals of the population to become parents 

o f the next generation. The fitter the member o f the population the more likely it is to 

produce an offspring. In addition, the selection operator can be used to select elitist 

individuals. Given the fitness of each population member GA can select good 

members in the current population for the next population. A selection process is 

usually biased toward fitter chromosomes and it pushes the search on apparently 

more profitable regions in the search space [Angeline, 1998a], Examples of well- 

known selection approaches are as follows:
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• Roulette wheel selection: In this method the possibility o f picking an individual is 

proportional to the individual's score or fitness. The fitter the chromosome, the 

more chance that it may be chosen for mating. Consider a roulette wheel where 

each chromosome in the population occupies a slot with slot size proportional to 

the chromosome's fitness [Gray et a l, 1997]. When the wheel is randomly spun, 

the chromosome corresponding to the slot where the wheel stopped is selected as 

the first parent. This process is repeated to find the second parent. Clearly, since 

fitter chromosomes have larger slots, they have better chance to be chosen in the 

selection process [Goldberg, 1989].

• Rank selection: The previous selection will have problems when the fitness 

differs very much. When one or few chromosomes have very high fitness on the 

roulette wheel then the lower fit chromosomes will have very few chances to be 

selected. This will increase selection pressure, which will cause 

diversity to decrease rapidly resulting in premature convergence. This fact has 

been illustrated for 5 chromosomes in Figure 2.4. Rank selection first ranks the 

population and then every chromosome receives fitness from this ranking. As 

shown in Figure 2.5 the worst will have fitness 1, second worst 2 etc. and the best 

will have fitness 5 (number of chromosomes in population). After this all the 

chromosomes have a chance to be selected. Rank selection still prefers the best 

chromosomes; however, there is no domination as in the case o f roulette wheel 

selection. But this method can lead to slower convergence, because the best 

chromosomes do not differ so much from other ones [Gray et a l,  1997],

• Tournament selection: Tournament selection [Goldberg, 1989] runs a 

"tournament" among a few individuals chosen at random from the population. 

The best individual is copied into the intermediate population. This process is 

repeated until the mating pool contains a sufficient number o f chromosomes to 

start the mating process. Selection pressure can be easily adjusted by changing the

35



tournament size. If the tournament size is larger, weak individuals have a smaller 

chance to be selected.

Elitism: In this approach, the best chromosome, or a user-specified number 

of best chromosomes, is copied to the population in the next generation. The 

remaining chromosomes are then chosen using any selection operator. Elitism can 

very rapidly increase performance o f GA, because it prevents losing the best 

found solution to date. [Gray et al., 1997],

□ chromosomel 
Ü chromosome2
□ chromosome3
□ chromosome4 
■ chromosomeö

Figure 2.4 Fitness graph before ranking

□ chromosomel 
llchromosome2
□ chromosome3
□ chromosome4 
■ chromosome5

Figure 2.5 Fitness graph after ranking



2.5.4 Crossover

Crossover is the main operator in GA, which assists exploration to new locations in 

the search space [Salman, 1999], Crossover uses the current diversity in the 

population to generate new solutions. Given two population members (or parents), 

crossover combines or mates parts of the two parents (or chromosomes) to yield two 

new chromosomes (offspring) with the hope that the new chromosome may be better 

than both of the parents if  it takes the best characteristics from each of the parents. 

Crossover occurs during evolution according to a user-definable probability. The 

three main crossover operators are described below. Several other forms of crossover 

have been investigated in [Michalewicz, 1996; Booker et al., 1997; Krink and 

Lovbjerg, 2002],

• Single point crossover: [Holland, 1975] provided one o f the earliest analyses of 

“one-point” crossover. It can be implemented by randomly selecting a common 

crossover point in both parents, and swapping the right end of both chromosomes 

as illustrated in the following example:

Parent A: 01001010

Parent B: 11110011

Offspring A: 01001011

Offspring B: 11110010

• n-point crossover: [Jong, 1975] extended the above single point analysis to an “n- 

point” technique. It applies the same strategy, but divides the original strings in n 

cut-points and substrings are swapped among these points. For instance for a 

two-point crossover system, two positions are randomly selected. The middle 

parts of the two parents are then swapped to generate two new offspring. This is 

illustrated in the following example:
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Parent A: 01001010

Parent B: 11110011 

Offspring A: 01110010 

Offspring B: 11001011

• Uniform crossover: [Syswerda, 1989] introduced “uniform crossover” that does 

not use cut-points but instead creates offspring by deciding, for each allele of one 

parent, whether to swap that allele with the corresponding allele in the other 

parent. Uniform crossover is more flexible to achieve any combination of genes. 

In this approach, alleles are copied from either the first parent or the second 

parent with some probability, usually set to 0.5. An example has been given 

below.

Parent A: 01001010 

Parent B: 11110011 

Offspring A: 01101011 

Offspring B: 11010010

2.5.5 Mutation

Mutation is the secondary operator to keep genetic diversity in the population [Back 

et al., 1997a]. Mutation is applied to the offspring chromosomes after crossover is 

performed. Mutation implements a random change in the value o f one or more genes 

for introducing new information into the system. Thus mutation introduces a certain 

amount o f randomness to the search. It helps the search find solutions that crossover 

alone might not encounter. In a bit-string it can be realised by flipping a bit. 

However, mutation functions as a background operator with a very low probability of 

application. As it has been observed as an infrequent phenomenon in both nature and
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GAs [L0vberg, 2002], Alternately a mutation operator could be set as the inverse of 

the number of genes in a chromosome or chromosome size [Goldberg, 1989]. 

Mutation increases diversity and searches new areas of the state space. A destructive 

mutation keeps the mutated population member whatever its fitness, whether good or 

bad. On the other hand a constructive mutation only keeps the mutation if it is more 

fit than before mutation, but this requires an extra call to the fitness function.

2.5.6 Premature Convergence in GA

Genetic algorithms may lead to premature convergence if the population of a GA 

reaches such a sub optimal state that the genetic operators are no longer able to 

produce offspring that are able to outperform their parents [Fogel, 1994; Affenzeller 

and Wagner, 2004], The intuitive reason for premature convergence is that the 

individuals in the gene pool are too ‘alike’. If a chromosome is far fitter than its rivals 

early on, it can come to dominate a population, leading to loss of genes that may later 

lead to better solutions and this prevents further exploration of search space [Dorigo 

and Di Caro, 1999], Thus one or few dominating chromosomes near local optima can 

attract individuals in a population before reaching the global optimum solution, 

resulting in premature convergence. So Premature convergence can be avoided by 

using some mechanisms like using subpopulation, employing high mutation rate, 

through fitness scaling etc.

• Subpopulation'. When chromosomes are divided into subpopulations, each 

subpopulation is evolved independent of the other subpopulations. 

Subpopulations interact through exchange of a number of chromosomes. This 

scheme ensures diversity in the population to prevent premature convergence.

• High Mutation rate: Increase in mutation rate aids in exploring new areas in 

the search space and increases diversity too. As the modality of a search space 

increases the likeliness o f a solution being trapped between ravines is more.
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Crossover alone works as a local search operator in a multi-modal search 

space. To escape from this trap a high mutation rate could be used, as 

mutation re-initialises chromosomes to new locations. An overly high 

mutation rate should be avoided as then GA starts to resemble a random walk 

rather than a directed process.

• Fitness Scaling: Fitness scaling is a process that re-scales the fitness with 

respect to the average of the population, so that the fittest chromosome is 

only, say, twice as likely to be chosen for cross-breeding as the average 

chromosome.

2.6 Swarm Intelligence
A secondary area of research emerged in the field of evolutionary computation is known 

as the Swarm Intelligence where the searches are guided by social pressure rather than 

evolutionary pressure used in EAs. But like EAs, swarms also consist of populations of 

individuals representing candidate solutions to a problem. Swarm intelligence emulates 

the searching techniques of insects where the communications between the members of a 

swarm direct the search. Two significant algorithms have emerged in this field: Ant 

Systems and the Particle Swarm Optimiser.

2.6.1 Ant Systems

Ant systems simulate the search techniques o f biological ants as they locate food and 

return it to the colony, reinforcing their paths on the return trip so that other ants can 

locate the same food source. The algorithm allows an initial population of ‘ants’ to 

walk randomly through the solution space. While walking each ant labels its path 

with a virtual pheromone marker proportional to the fitness o f the path. When one ant 

finds a good path from the colony to the food source the other ants tend to follow that 

path, but may test alternate paths with some level o f probability. If the alternative
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path selected results in a stronger pheromone marker, there will be a greater 

probability o f that path being selected by the next ant. The algorithm also allows the 

evaporation of the pheromone trail over time, which helps to avoid the convergence 

o f the solution to a local optimum. Without evaporation the exploration o f the 

solution space would be constrained. Ant systems have been applied successfully to 

path problems, network load balancing problems [Di Caro and Dorigo, 1998] and the 

quadratic assignment problem [Maniezzo and Colomi, 1999],

2.6.2 Particle Swarm Optimisation

A particle swarm optimiser is a population-based stochastic optimisation algorithm 

that emulates a flock [Kennedy and Eberhart, 1995; Kennedy and Eberhart 2001] 

searching over the solution landscape by sampling points and converging the swarm 

on the most promising regions. PSO is influenced by the simulation of social 

behaviour rather than the survival of the fittest [Shi and Eberhart, 2001], Another 

major difference is that, in PSO, each individual benefits from its history whereas no 

such mechanism exists in GAs [Coello Coello and Lechuga, 2002], PSO is easy to 

implement and has been successfully applied to solve a wide range of optimisation 

problems such as continuous non-linear and discrete optimisation problems [Kennedy 

and Eberhart, 1995; Kennedy and Eberhart, 2001; Eberhart and Shi, 1998a], In 

particle swarm, a particle’s movement is influenced by its velocity, an attraction to its 

previously found promising search area and an attraction towards the best area 

discovered by its neighbours. Thus the social pressure on a particle applied by other 

particles in the neighbour hood plays an important role behind the convergence in 

particle swarm.

The basic structure of a particle is significantly more complex than that of a 

member of a GA population. A particle is denoted by i. If there are Q particles in total
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then it is said that swarm size is Q and i can vary from 1 to Q. Each particle consists 

o f the following main components:

• Xi is a vector containing the current location in the solution space. The size of 

the Xi is denoted by d, which is the dimension of the problem or the number of 

variables used by the problem being solved. For example, for some function 

/ ( u, v, w), X u  corresponds to the u value, X i 2 corresponds to the v value, and 

X j  corresponds to the w value.

• Fitness is the quality of the solution represented by the vector Xj. This is a 

problem specific evaluation function and refers too how well a particle 

performs. In a flock of birds this might be how close a bird is to a food source, 

in an optimisation algorithm this refers to the proximity of the particle to an 

optima.

• Vi is a vector containing the velocity for each dimension of X t. It defines the 

step size o f movement along a dimension from the current position o f a 

particle. It drives the direction a particle will move through the search space, 

that is, causing the particle to make a turn.

• ‘pbest’ is the fitness value of the best solution yet encountered by a particular 

particle, and P, is a copy of the Xt for the location that generated the particle’s 

pbest. Jointly pbest and P, comprise the particle’s memory and influence 

particle’s movement to pull the particle towards a promising search region.

• Pg is an important parameter in particle swarm. Pg is the location of the 

particle that currently produces the best score in the neighbourhood. When the 

swarm is divided in small groups of particles then the neighbourhoods overlap 

and every particle is in multiple neighbourhoods. On the other hand when 

entire swarm is considered as single neighbourhood, Pg defines the location of 

the global best particle.
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The update equations for velocity and the position of each dimension of a 

particle are shown in (2 .1) and (2 .2 ) respectively, given a problem of ̂ -dimensions, 

for each particle i and each dimension d, d  = [1..D].

Vi, d(t + 1) = co x V,\d(t) + y/ \ x ran 1 x (Pi,d -  Xi,d(t))
( 2 .1 )

+ f 2 x  ran2 x (Pgd -  Xi,d(t))

Xi,d{t +1) = Xt, d(t) + hi-, ¿(f +1) (2.2)

where Vu  is the velocity of particle / along dimension d, rani and ra «2  are 

random values on the range {0..1}, X i(i is the current position of particle i along 

dimension d, P¡j is the location along dimension d at which the particle previously 

had the best fitness measure, and Pgd is the current location along dimension d of the 

neighbourhood particle with the best fitness. The constant co is the inertia weight 

described by [Shi and Eberhart, 1998a], A high value o f a> gives a global search and a 

low value gives local search, y/\ is the cognitive learning rate, y/2 is the social 

learning rate. The relative influence of the particle’s memory (cognitive influence) 

and the neighbourhood best (the social influence) can be adjusted. Together, these 

influences make up the learning rate of the swarm. Dropping the social component 

y/2 results in the Cognition-Only Model of the velocity equation:

Vi,d(t + 1) = a  x Vi,d{t) + y / \ x rani x {Pi,d -  Xi,d(t)) (2.3)

Now dropping the cognition component defines the Social-Only Model o f the the 

velocity equation: :

Vi,d(t + 1) = (oxVi,d(t) + i / / 2xran2x(Pgd -  Xi,d(t)) (2.4)

Other PSO parameters:

• X max and X min (optional) set bounds for the search area.

• Vmax (optional) sets bounds on the velocity o f a particle.
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THRESHOLD (optional) sets the acceptable error level. A solution falling 

within THRESHOLD distance of a specified value would be considered an 

acceptable solution and the search would be terminated.

Initialisation of swarm:

for each particle i, i = [1..Q] 

for each dimension d, d = [1..D]

set Xifd to a random value on the range [Xmin . .Xmax] 

set Pi,d t o  Xi/d

set Vi'Ci to a random value on the range [Vmln . .Vmax] 

compute fitnessj

set pbesti to fitnessi 

set g to i if fitnessi  > fitnessg 

Perform search:

until a terminating condition is met 

for each particle i, i = [1..Q] 

for each dimension d, D  = [1..D] 

compute Vi'd Equation (2.1) 

compute Xii(i Equation (2.2) 

compute fitness^ 

update g if fitness^  > fitnessg 

update Pi,d pbest if fitnessi > pbest 

Report results

Figure 2.6 Pseudo-code for PSO
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• MAXITERATIONS (optional) sets a limit on the number of iterations to be 

executed before terminating a search.

The complete algorithm for the Particle Swarm Optimiser is listed in Figure 

2.6. Search starts with the random initialisation of particles’ positions and velocities 

within the allowed range defined by X max, Xmin and Vmax. Usually Vmin is the negative 

of Vmax- Equations (2.5) and (2.6) are used to limit the magnitude of velocity and 

position.

To limit velocity of a particle along dimension d :

V,d(t + 1) = min( V max, m ax(-F  max, Vi,d(t + 1))) (2-5)

To limit position of a particle along dimension d :

Xi,d(t + 1) = min( X  max, m ax (X  min, Xi,d(t + 1))) (2.6)

Each particle keeps track o f its own performance. At each iteration, the 

velocity o f every dimension o f a particle gets updated according to equation (2 .1), 

where Vid, Pi,d and Pgd constitute the particle’s momentum. As this momentum is 

different for different dimension of a particle, this has effect to force the particle to 

change the trajectory in the search space towards the most promising areas. This 

momentum is essential, as it is the feature of PSO that allows particles to escape the 

local optima. In addition the rani and ran2 in equation (2.1) adds some random 

adjustments in velocities, which is essential to avoid the situation where the particle 

endlessly follows the exact same path.

2.6.3 Drawbacks of PSO

PSO like any other stochastic algorithm may prematurely converge [Lovberg, 2002], 

Fast rate o f information flow between particles can create similar particles resulting
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in less diversity in the system., which increases the possibility o f being trapped in 

local optima [Riget and Vesterstrom, 2002], PSO is also very much problem 

dependent like any other stochastic search. No single parameter setting exists which 

can be applied to all problems [Lovberg, 2002], For example choosing a value for the 

inertia weight, co in (2.1), could be critical. A large inertia weight favours exploration 

(global search), while a small inertia weight favours local search [Shi and Eberhart, 

1998a], Thus finding the best value forruis difficult and it may vary from problem to 

problem. PSO’s problem-dependent performance can be avoided by using self- 

adaptive parameters. In self-adaptation, the search process uses a feed mechanism to 

inform the system in favour of adjusting parameters depending on the problem 

[Lovberg, 2002], Successful application o f self-adaptation has been seen on GAs 

before [Back, 1992], It has been applied to PSO as well in several occasions [Clerc, 

1999; Shi and Eberhart, 2001; Ratnaweera et al., 2003; Tsou and MacNish, 2003; 

Yasuda et al., 2003]. Hybridisation also helps to combat premature convergence in 

PSO. Hybridisation refers to combining different approaches to benefit from the 

advantages o f each approach [Lovberg, 2002], Hybridisation has been successfully 

applied to PSO by [Angeline, 1998b; Lovbjerg and Krink, 2002; Kalyan et al., 2003; 

Reynolds et al., 2003; Higashi and Iba, 2003; Esquivel and Coello Coello, 2003],

2.6.4 PSO vs. GA

Both GA and PSO start with a group of random generated population. Also both of 

them use fitness values to evaluate population. However unlike GA, PSO has no 

evolution operators such as crossover and mutation rather particles update themselves 

with the internal velocity. PSO uses memory, which is important to the algorithm. 

The cognitive operator of PSO is personal best history and velocity inertia, but for 

GA it is mutation. The social operator for GA is selection and crossover where as for 

PSO it is neighbourhood best position.
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Experiments conducted by [Kalyan et al., 2003] showed that a PSO 

performed better than GAs when applied on some continuous optimisation problems. 

[Robinson et al., 2002] found superiority of PSO over GAs in designing a difficult 

engineering problem. [Mesot, 2004] was able to generate efficient locomotion pattern 

for modular robots by using PSO and he found PSO delivered constantly better 

results than GAs. [Kalyan et al., 2003] successfully combined PSO and GA to 

develop GA-PSO and PSO-GA. In GA-PSO, the GA population is used to initialise 

the PSO population. For PSO-GA, the PSO population is used to initialise the GA 

population. Kalyan’s results revealed that both PSO and PSO-GA showed better 

performance than both GA and GA-PSO. In training neural network PSO also shows 

better results than GA [Eberhart and Shi, 1998b; Van den Bergh and Engelbrecht, 

2000; Ismail and Engelbrecht, 2000], [Shi and Eberhart, 1998b] found that the PSO is 

not sensitive to the initial swarm size, which means that PSO with smaller population 

size can perform comparably to GAs with larger population.

2.7 Summary
This chapter provided a brief overview of optimisation. An introduction o f global and 

local optimisation has been given. This was followed by a brief discussion of 

traditional and stochastic optimisation methods. Traditional algorithms are also 

known exact methods. Brute force and Branch-and-Bound algorithms were 

introduced as examples o f exact methods. Then introduction of three major stochastic 

algorithms were given. These were Hill-Climbing, Simulated Annealing and Tabu 

Search. Evolutionary algorithms (with more emphasis on genetic algorithms) were 

then presented. Different control parameters for GA were explained. Mechanisms to 

tackle premature convergence in GA were also mentioned. This is followed by an 

elaborated discussion of particle swarm optimisation and its various modifications. 

PSO equations and parameters were explained. References have been given for the
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use of hybridisation to combat premature convergence in PSO. Finally a brief 

comparison of the PSO and GA has been provided.
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Chapter 3

The n-tuple Classifier

3.1 Introduction
An n-tuple classifier is a memory-based method. It is a type of a neural network with 

a structure that could be easily implemented using a RAM (Random Access 

Memory). It forms the basis o f a commercial product [Aleksander et al., 1984], The 

n-tuple method is more specifically known as a type of Weightless Neural Networks 

(WNN) or RAM networks (RAM-net). The following sections will introduce both the 

weightless and weighted approach on neural networks and later the n-tuple system 

will be elaborately described. The motivation behind the optimisation of n-tuple 

method will be explained also.

3.2 Artificial Neural Network
An Artificial Neural Network (ANN) -  an abstract model inspired by knowledge of

the brain’s function -  is a collection of interconnected elements that can learn to

recognise patterns [Boone et al. 1990a; 1990b; Rich and Khight, 1991], ANNs

contain a large number o f very simple, neuron-like processing elements (PE) and a

large number o f weighted connections between these elements. A PE is

essentially an equation which is often referred to as a transfer function.
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Figure 3.1 Layers in ANN

Figure 3.2 Feedforward network

Figure 3.3 Recurrent network
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A processing unit takes weighted signals from other neurons, possibly 

combines them, transforms them and outputs a numeric result. Many neural networks 

have their neurons structured in "layers". Layers are made up o f a number of 

interconnected 'nodes' which contain an 'activation function'. Typically the PEs are 

arranged in layers (Figure 3.1); with the input layer receiving inputs from the real 

world and each succeeding layer receiving weighted outputs from the preceding layer 

as its input. Hence the creation of a feedforward ANN (Figure 3.2), where each input 

is fed forward to its succeeding layer. The first and last layers in this ANN 

configuration are typically referred to as input and output layers. Any layer between 

the input and output layers are called hidden layers because they do not have contact 

with any real world input or output data. Unlike a feed forward ANN, in a recurrent 

type network connections can go in either direction from all layers, Figure 3.3. 

Because o f the feed back connection recurrent networks produce complex, time- 

varying outputs in response to simple static input which is important when generating 

complex behaviour. The architecture of an ANN is determined by the overall 

connectivity and transfer function of each node in the network.

3.2.1 Learning in an ANN

Most ANNs contain some form of 'learning rule' which modifies the weights o f the 

connections according to the input patterns that it is presented with. In a sense, ANNs 

learn by example. Neural networks are "trained", meaning they use previous 

examples to establish (learn) the relationships between the input variables and the 

predicted variables by setting these weights. Once these relationships are established 

(the neural network is trained), the neural network can be presented with new input 

variables and it will generate predictions. The ability to identify the rules, to 

generalize, allows the system to make predictions. This property is known as the 

generalization of ANN. To simulate intelligent behaviour the abilities of
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memorization and generalization are essential. Learning in ANNs can roughly be 

divided into supervised, unsupervised and reinforcement learning. Supervised 

learning is based on direct comparison between the actual output of an ANN and the 

desired correct output, also known as the target output. Back propagation [Hinton, 

1989] is one o f several possible learning rules to adjust the connection weights during 

learning by example. Learning occurs when the network weights are adjusted as a 

function of the error found in the output of the network. The error is the difference 

between the expected output and the actual output. The weights are adjusted 

backwards (back-propagated) through the ANN network until the error is minimized 

for a set of training data. In reinforcement learning the exact desired output is 

unknown, but it gets the information of whether the actual output is correct or not. 

Unsupervised learning even doesn’t get the information on correct output. It is solely 

based on the correlations among input data. The algorithm of learning rules 

determines how the connection weights are changed. Among the popular learning 

rules there are delta rule, Hebbian rule, the anti-Hebbian rule and competitive 

learning rule [Hertz et al., 1991],

3.2.2 Weightless Approach

The weightless neural networks use explicit storage elements to keep its state, rather 

than in its inter-element connections, as more conventional networks do. In 

weightless approach there is no variable weight between the nodes rather neuron 

functions are stored in look-up tables. The learning algorithm is very simple, the 

patterns are presented to the inputs o f the network and then the patterns are stored in a 

certain way, which results in highly flexible and fast learning algorithms. In 

weighted models, training is much more complex since changing weights to train a 

given input-output mapping changes the nodes behaviour to other patterns learned
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previously. The very first work in this field is described by [McCulloch and Pitts, 

1943; Hebb, 1949 and Rosenblatt, 1958],

From the experimental studies presented in [Ludermir et al. 1999; Christensen 

et al., 1996; Hepplewhite and Stonham, 1997; Jorgensen, 1997; McCauley et al., 

1994; Ramanan et al., 1995; Rohwer and Morciniec, 1996; Wang et al., 1996] the 

effectiveness of WNN models can be realised. Since the original work by [Bledsoe 

and Browning, 1959] many weightless models were proposed such as the 

Probabilistic Logic Node (PLN) by [Aleksander, 1989]. Aleksander also proposed 

the concept of multi-layer architecture [Kin and George, 2005]. Some of the other 

WNN models include the probabilistic RAM (pRAM) [Austin, 1994], Goal Seeking 

Neuron (GSN) [Austin, 1998], Boolean Convergent Network (BCN) [Howells et 

al., 1995], Generalised Convergent Network GCN [Howells et al., 1995], Probabilistic 

Convergent Network(PCN) [Howells et al., 1995], Moving Window Classifier 

[Hoque, 2001] and Deterministic Adaptive RAM Network (DARN) [Yee and 

Coghill, 2004],

3.3 An n-tuple Classifier
Although the n-tuple classifier is not famously popular compared to some other 

methods, such as multilayer perceptrons, the n-tuple classifier does have its own 

advantages over a variety o f pattern recognition algorithms [Rohwer and Morciniec, 

1998], The networks based on the n-tuple method have two great strengths, they can 

be trained quickly and they can be implemented in conventional computers simply 

compared to other equation solving and minimising methods. The training of the 

basic classifier is a one-shot memorisation process. These advantages come at the 

cost of recognition robustness. It has been shown that the n-tuple method can result 

in quite reasonable recognition performance if used with care [Rohwer and 

Morciniec, 1998].
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An n-tuple classifier is based on conventional random-access memory 

(RAM). The network is built out of RAM nodes and consists o f a set of 

discriminators, each representing a class to be leamed/recognised. Figure 3.4 shows a

Output

Figure 3.4 1 bit Ram Node

Ram Node 1

Output

Figure 3.5 A Discriminator
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Figure 3.6 A discriminator illustrated by [Tambouratzis, 2000]

representation of a typical RAM node. The 1-Bit-RAM node is a device which can 

store one bit o f information for each input address. The input address of the RAM 

unit is also known as “tuple”. If the width o f the address bus (also known as input 

connection map) is n bits (as shown in Figure 3.4) then the tuple is termed as “n- 

tuple”. The width o f the address bus is also known as “tuple-size” [Bledsoe and 

Browning, 1959], A control input is available for switching the mode between 'Write' 

and 'Read' for learning and recall. Initially all memory units are set to 'O'. During the 

learn ('Write') mode the memory is set to T  for each supplied address; in the recall 

('Read') mode the output is returned for each supplied address, either 'T  (if the 

pattern was learned) or 'O’ (if the pattern was not learned). A RAM node is limited to 

learn binary patterns (which is the memory's address word), its output is also binary.
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A group o f RAM nodes in a tree-like structure is called a discriminator 

(Figure 3.5). The discriminator achieves its goal by presenting to each neuron only a 

subset o f the input pattern, and adding up the outputs of its RAM nodes. This sum 

can be seen as a measure of the recognition confidence o f the discriminator. 

Therefore, when the discriminator sees a previously learned pattern, its integer output 

reaches the discriminator's maximum. For an input vector, o f size L, the number of 

necessary RAM nodes R o f connectivity n that should be used to cover all inputs of 

the input vector should satisfy: R x  n > L. L is known as the resolution of an image. 

If W and H  denote the width and height of an input image, then image resolution, L, 

will be given by the following formula:

Image Resolution, L = W  x H  ( 3.1)

The n bits o f a tuple constitute a “feature” o f the pattern. Collectively R set of 

n-bit patterns are called “input mapping” or “connectivity pattern” denoted by 77 

[Rohwer and Morciniec, 1996], 77 comprises all the information from the L bits input 

pattern available to the recogniser. Figure 3.6 illustrates how a group o f tuples or a 

discriminator is connected to a binary picture of a digit. This particular example was 

used in [Tambouratzis, 2000] where the n-tuple size was 3. The resolution of the 

image is 56 bits according to equation ( 3.1). The figure shows just one discriminator 

There are eight memory locations correspond to n=3. An adder has been shown in 

Figure 3.6 to combine the responses of individual tuples in the group. The number of 

classes, which need to be distinguished by a network, determines the number of 

discriminators needed in a network. The network shown in Figure 3.7 can be used to 

distinguish a fixed number o f classes. If it consists o f C discriminators, it can 

differentiate C classes. The memory size required by the network will be given by 

equation ( 3.2), where R is the total number o f available tuples with tuple-size of n 

bits and every memory location addressed in a tuple will have 1 bit reserved for each 

discriminator.
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M em ory size  = R  x 2" x C (3.2)

Discriminator 1

iMilliWBii
Majority

Decision

Block

Winner

Class

Figure 3.7 An n-tuple network

The Majority Decision Block (MDB) [Jorgensen et al., 1995] at the outputs of 

the adders chooses the winner class using some criteria such as the greatest sum, a 

threshold of the greatest sum, difference between sums etc. In greatest sum approach, 

the discriminator containing the greatest number o f active RAM nodes is selected. 

Thus a pattern is 'recognized' as the one whose discriminator 'fired' the most, that is, 

the discriminator with the highest count of memorized tuples. Two measures of
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confidence can be used [Bishop, 1989; Mitchell and Minchinton, 1996], Absolute 

Confidence AC  and Relative Confidence RC:

Most Number o f ‘fires ’ -  Next highest
AC = ------------------------------------------------------  ( 3 J )

Number o f Tuples

Most Number o f fires ’ -  Next highest ( 3  4)
RC =

Most Number o f fires ’

3.3.1 Architectural Parameters

The n-tuple network has the ability to memorise and generalise. Memorization is an 

obvious task in learning. This was implemented by storing the input samples 

explicitly. Generalization allows the system to make predictions on unknown data. 

Generalization can dramatically reduce the amount o f memory needed, and produce a 

very efficient method of memorization. In equation ( 3.2) the exponential relationship 

makes the choice o f n very sensitive. The larger the n-tuples selected, the fewer the 

number of tuples required to cover the entire image. It can be noted that as n increases 

the memory requirements by the network also increases. This imposes a physical 

limit to the value of n. For n=L the system would have a single huge impractical 

memory and wouldn’t be able to generalize i.e. be able to recognise patterns that were 

not exactly like those taught. On the other extreme if  n=l, all the locations in the 

memory are filled with Is quickly and the network saturates and loses its 

discriminative power [Ullmann,1969; Tarling and Rohwer, 1993], Thus when larger 

value of n is chosen saturation becomes less problem but with a very large value of n 

the system loses it ability to generalize.

It has been found empirically that for a given size of training set, there is an 

optimum value n which will give maximum performance [Aleksander and Stonham,

1979], [Ullmann, 1969] showed how the percentage of correct classification is
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increased to a peak with the increase in value of n. After the peak the percentage of 

correct classification falls with a further increase in n. For larger training sample a 

higher peak was found for a larger value of n but the shape of the curve remained the 

same. [Hoque, 2001] demonstrated the performance of the n-tuple classifier for 

different training set sizes taken from the NIST numeric database [Wilkinson et al., 

1992], Figure 3.8 shows the graphical plot o f the reported results in [Hoque, 2001], It 

depicts the relationship between the number of train images and the recognition rates 

of an n-tuple network with the tuple-size 12. The rise in accuracy with increase in 

training patterns was significant at 1000  training images per class.

Input connection mapping (rj) is another important parameter for n-tuples. 

Conventionally input mappings are randomly chosen [Bledsoe and Browning, 1959], 

It has been demonstrated in [Picton, 2000] that a randomly connected system perform 

better than a network with an ordered map. Orderly fashioned input connection failed
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because the patterns being discriminated were very similar to the way the system was 

organised. Random connection was favourable because randomness doesn’t have a 

pattern with it. [Fairhurst and Stonham, 1976] have shown that the n-tuple scheme is 

relatively insensitive to the connection mapping. Flowever [Aleksendar and Stonham, 

1979] have argued that a random map is suitable for an un-optimised problem 

because sampling points distributed throughout the pattern matrix are more likely to 

detect global features than an ordered map. For an optimised case better selection of 

input mappings can give a relatively better performance [Aleksander and Stonham, 

1979], [Bishop et al., 1990] demonstrated the importance o f sampling sequence in 

discriminating similar classes. They illustrated the fact with two 16-bit data pattern as 

shown in Figure 3.9. If four 4-bits tuples are used and each tuple was formed from 

each column three of the tuples would be identical, so 75% pattern would be same. 

But if tuples are formed by taking bits from each row then none of the tuples are 

identical and it helps to discriminate the patterns.

Figure 3.9 Effect of input mapping shown in [Bishop e t  a l., 1990]
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3.4 Motivation for Optimisation
The classification performance o f the n-tuple classifier is highly dependent on the 

input bits probed [Bishop et al., 1990; Jorgensen et al., 1995]. The number of 

possible connections for a 32 by 32 binary pattern matrix is enormous. Let us 

consider an n-tuple classifier of 140 tuples with the tuple-size 8 bits. For an input 

binary image with a resolution of 32 bits by 32 bits the total number of available 

pixels will be, from equation (3.1), 1024 bits. Now if the same pixel doesn’t repeat in 

a tuple then the possible number of tuples that can be formed is found by the 

formulae o f combination, M  = 1024Cg ~ 2.91 x lO 19. M  tuples when divided into 

groups o f 140 then total number of combinations will be B = mCmo, which is a very 

large number. Therefore an exhaustive search for B mappings is impossible.

The classification performance is a function o f input mappings and it 

approximates to a normal distribution [Aleksander and Stonham, 1979], where the 

majority of the mappings give average performance, but a small number of 

connection mappings give a relatively better performance. Figure 3.10 demonstrates 

the classification histogram for a subset of the NIST [Wilkinson et al., 1992] database 

where two thousands maps were generated randomly and the frequencies of maps for 

recognition rates were plotted. If all B mappings as explained earlier were available, 

the tail on the right side o f the histogram would go much further as shown by the 

imaginary dotted area in Figure 3.10. Finding mappings in this dotted optimisation 

zone is extremely challenging. The detection o f mappings in this area by random 

search is governed by chance.

[Bishop et al., 1990] demonstrated the importance of choosing right sequence

in which input is sampled to discriminate similar classes. For example, consider an n-

tuple system which is trying to recognise and classify 8 ^ 8  images of characters and

for which the tuple size is 8 . Figure 3.11 and Figure 3.12 show two similar characters,

for c and for e, for which there are 8 pixels which are different and there are 8 tuples
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to sample the image. Now consider a situation where the eight different pixels are 

sampled and formed into one tuple and the other tuples are formed by the pixels 

which are common to both the letters. This way of the eight tuples used to sample the 

image, seven will be identical. Therefore, if  an e is presented to the two 

discriminators, all eight neurons in the ‘e-discriminator’ will fire, and seven neurons 

in the ‘c-discriminator will fire. If, however, one sample of each tuple came from the 

area where the pixels differ, then all eight tuples will be different, so all eight neurons 

in the ‘e-discriminator’ will fire, and no neuron in the ‘c-discriminator’ will fire.
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Thus the sequence in which the input is sampled and the tuples formed can 

have a significant effect when discriminating between similar classes. When the 

letters being analysed are very different, for example, an E  and an i, then the system 

will have little difficulty discriminating between the classes, irrespective of the 

sequence in which the input is sampled. Therefore, when attempting to discriminate 

between many classes, some of which are similar, the input should be sampled in one 

sequence for some class discriminators, but in other sequences for other class 

discriminators.

[Bishop et al., 1990] applied a basic evolutionary technique to determine the 

sequence in which the input is sampled and the tuples formed. One sequence of input 

samples was used for the discriminators for most of the characters, but different 

sequences were used for the discriminators of characters which are too similar, such 

as c and e (Figure 3.1 land Figure 3.12), i and /.

The solutions suggested by [Bishop et al., 1990] were the sequence of samples 

to increase the orthogonality o f response of each discriminator. A mutation technique 

was used to form tuples. The performance of the system with this mutation was 

evaluated by measuring the relative confidence ( 3.4) and a decision was made if the 

new mapping should be adopted. The mutation was realized by swapping addresses 

used to sample the data patterns so as to form the tuples. After Bishop’s work genetic 

algorithm was revisited by others more recently [Garcia, 2003; Farhan-Khola and 

Flowells, 2003] to optimise the input connections of n-tuple network. Other stochastic 

search algorithms like Tabu search and Simulated Annealing (described in Chapter 2) 

were applied by [Garcia and Souto, 2004] to choose the connectivity pattern of n- 

tuple classifier.

The backtracking method [Ellis and Sartaj, 1984; Thomas et al., 1990] has 

been found to be more superior than any exhaustive search or random selection

method as it strives to eliminate unviable solutions. The process o f going back to the
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Figure 3.11 Image of character c similar to e

F igu re 3.12 im age o f  character e sim ilar to c
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nearest decision facilitates to choose new component in solution vector and this leads 

to the name backtracking. [Jung et al., 1996] used backtracking algorithm to generate 

distinguishing tuples for selected character dichotomies. Initially they tried generating 

tuples at random. But random selection method found no tuples for more difficult 

dichotomies like c and e.

[Jorgensen et al., 1995] described a simple input selection strategy that makes 

use of a leave-one-out cross-validation test [Hand, 1986], It involves using a single 

observation from the original sample as the validation data, and the remaining 

observations as the training data. This is repeated such that each observation in the 

sample is used once as the validation data. [Jorgensen et al., 1995] introduced an 

information measure (denoted the cogentropy) to evaluate the quality of a given 

combination of tuples. The concept of information measure was combined with the 

cross-validation and was found advantageous to obtain an n-tuple network with a 

better performance than a randomly trained network of the same size.

The explanation and examples mentioned above confirmed that it was 

favourable to optimise input connections o f the n-tuple network. Improvement in 

performance due to optimisation was noticeable [Bishop et al., 1990; Jorgensen et al., 

1995; Jung et al., 1996]. It provided insight to this research to investigate other 

methodologies to improve the connectivity pattern of the n-tuple classifier. The 

proposed approach was based on particle swarm intelligence. In the selection process 

of the algorithm the performance of each tuple was measured with a reward and 

punishment based scheme [Azhar and Dimond, 2004a], Each tuple associates a 

memory of its own performance. The strategy was to keep the best-performed 

configuration over a lifetime of a tuple. Once the target set of best-performed 

configurations are sought the optimal set o f tuples are exploited for the final 

recognition task.
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3.5 Summary
This chapter provided an introduction of Artificial Neural Networks with the focus on 

the weightless approach. A memory based n-tuple network has been chosen in this 

research for optimisation, so the architecture of this network has been described in 

detail. Both the training and learning algorithms o f n-tuple networks have been 

explained. It has been shown that the connectivity pattern o f the n-tuple system plays 

important role in selecting features of a pattern class. In the traditional method the 

connectivity pattern is defined at random and then fixed training. Choice of the right 

sampling sequence can improve the discrimination power of the network 

considerably. Considerable research presented in this chapter showed that it was 

promising to optimise the connectivity pattern of n-tuple networks for improved 

recognition performance. Being successfully applied in many other areas particle 

swarm intelligence has its merits in selecting important features of the input patterns. 

As in PSO the connectivity pattern is not defined at random, the RAM nodes will not 

be uniformly distributed along the input vector. Thus the PSO increases the 

probability o f many RAM nodes to be connected to relevant features of the input 

vector. This chapter presented these arguments and motivations behind the proposed 

optimisation choices and also the theory o f the chosen n-tuple network for this 

research.

66



Chapter 4

Experimental Framework

4.1 Problem Definition
The effectiveness of an algorithm was tested through experiments. Experiments were 

set-up to train an n-tuple network with a modelled algorithm and then to test if the 

training improves the recognition performance o f the network. For the training and 

testing purpose a database were required. Selection of standard database for the 

experiment was very crucial. Section 4.2 will describe the arguments behind 

choosing a specific database for the experiments. Database contains different classes 

that will be recognized by the network. In a traditional n-tuple network there will be 

specific number o f tuples and these will be connected to the input image through 

random connections. Number of tuples in the network will define the architecture of 

the n-tuple classifier. Images for the experiment will be handwritten digits in binary 

form. So a connection between a location of an image and the tuple will carry one bit 

o f information.

Optimisation algorithms will be used to find better input connections to the 

tuples so that tuples get connected to the important areas o f an image. The purpose of 

the experiments will be to find an optimal set o f input connections to the tuples. It

will be extremely rare to find a connection to a tuple such that the connection is
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equally good for all different types of images or classes. This is because there will be 

similar classes in the system and the overlapping region between similar classes will 

cause the discrimination task much harder. There will be classes in the dataset which 

will have complicated pattern and it will be difficult for the classifier to recognize this 

pattern. This difficult class of images can be termed as a critical class. It is logical to 

say that the discriminating power of a critical class can be improved if enough tuples 

are available to connect to the important featured areas of a class. So for a better 

recognition o f a critical class it is desirable to provide more tuples than the number of 

tuples required for a non-critical class. The strategy was to use the optimisation 

algorithm to tune more tuples for a critical class than a non-critical class.

A tuned tuple is known as a class-specific tuple, which best describes a 

specific class but also describes other classes to some extent. Thus there will be a 

number of class specific tuples for different classes. These groups of tuples will try to 

improve the recognition rates of their own specific classes as well as other classes and 

eventually by working together all these tuples will improve the overall recognition 

rate of the images. So clearly there will be different number o f class-specific tuples 

for different classes. In the experiments these numbers were calculated by finding 

error rates of a randomly connected n-tuple classifier. At first a traditional randomly 

connected classifier was used to find the error rates o f different classes. Then total 

available tuples were divided into different classes proportionately to the error rates. 

This assumes linear relationship and this assumption is the first approximation. So the 

class with the most error rate gets the most number of tuples and the class with the 

least error rate gets the least number o f tuples. All experiments for optimisation task 

will find these optimum set of class specific tuples and once found the whole set will 

be used to recognise the test data set. Once recognition rates are found, the 

experiment will be repeated several times to facilitate statistical significance testing 

(Section 4.4) and to check if the results are consistent. Later a statistical plot (Section

68



4.5) will help to visually summarize the distribution o f recognition rates. Reasons for 

choosing specific n-tuple size have been given in Section 4.3.

4.2 Database Selection
Standard databases have become very important to facilitate research in character 

recognition [Guyon et al., 1997]. They are an essential requirement for the 

development, evaluation and comparison o f different character recognition 

techniques. Databases can be collected in a laboratory environment in which subjects 

prepare samples on standard forms that are then digitised. But the awareness by the 

subjects of the use of their handwriting may introduce biases into the data. In light of 

this, an acceptable character image database should be produced from real world 

environments so that the writings are truly unconstrained and more representative. 

Some examples of such publicly available database can be found in [CEDAR 

CDROM-1, CEDAR CDROM-2, ERIM, NICI], The database used in this research 

was a fairly large real life database compiled by U.S. National Institute of Standards 

and Technology, and is often popularly known as NIST database [Wilkinson et al., 

1992],

4.2.1 NIST Database

NIST released Special Database 3 (SD3) in February 1992 as the official training 

materials for the First Census Optical Character Recognition (OCR) Conference 

[Wilkinson et al., 1992]. The conference discussed the performance of 45 OCR 

systems submitted by 26 academic and industrial organizations. SD3 was included of 

a CD-ROM distributed by NIST and the CD-ROM contains images of 3699 

Elandwriting Sample Forms (HSFs) and 814255 segmented handprinted digit and 

alphabetic characters from those forms. An example EISF form can be found in 

Appendix B. There are several partitions, denoted by hsf_{0,l,2,3j, in SD3 containing 

digits, upper and lower images. The writers of the SD3 partitions were Census Bureau
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field personnel stationed throughout the United States. A separate partition o f images, 

denoted by hsf_{4}, was released as the testing materials for the OCR conference and 

it was named as Special Database 7 (SD7) [Wilkinson, 1992], Images of SD7 were 

obtained from 500 HSF forms completed by high school students in Bethesda, 

Maryland. Thus the training set and the test set used in the OCR conference were 

representative of different distributions: the training set consisted of characters 

written by paid US census workers, while the test set was collected from characters 

written by high school students. Examples from these training and test sets are shown 

in Figure 4.1 and 4.2. Notice that the test images contain some very ambiguous 

patterns. The general conclusion of the conference was that the testing images of 

hsf_{4} are more difficult, in a recognition sense, than the images of hsf_{0,l,2,3}. 

This was later demonstrated in [Grother, 1993],
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Figure 4.1 Typical images from NIST training set
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Figure 4.2 Typical images from NIST test set

In this research the partition hsf_{0} of the Special Database 3 was used for 

training and the partition hsf_{4} of the Special Database 7 was used for testing. 

NIST recommends using images o f hsf_{4} for testing as they are more difficult from 

other partitions and this ensures the heterogeneity between the training and testing set 

(see analysis in [Wilkinson et al., 1992]), a fact which is reflected in the results 

presented in this thesis. The numeric data set consisting only the digits (0,1.. .9) was 

used for the experiments. Each character is a binary image with the dimension 32 by 

32. All digits are scaled into same dimension and centred. In the partition hsf_{0} 

there are 1000 images per class for training and in the partition hsf_{4} there are 1000 

images per class for testing.

4.3 Tuple size and R
The performance of the n-tuple method depends mainly on the size o f the n-tuple 

chosen [Aleksander and Stonham, 1979; Rohwer and Lamb, 1993; Ullman, 1969; 

Ullman and Kidd, 1969], [Hoque, 2001] performed an experiment to compare the

accuracy of n-tuple classifiers as the tuple size varied from 2 to 16. Numeric data
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consisting o f digits were used from three different databases. Results in the Figure 4.3 

employed random connection mappings and correspond to the mean of several test 

runs. DB1 in the figure was extracted from machine printed postcodes supplied by 

British Post Office. The DB2 contains images extracted from envelops o f British 

mail. Both the database contains 300 binary images o f each character. DB3 was the 

NIST database with 1000 images per character as described in the previous section. 

DB1 and DB2 showed peak accuracies around n=10 where as DB3 showed peak 

accuracy around «=72. Hoque’s work [Hoque, 2001] confirmed Ullmann’s [Ullmann, 

1969] explanation about the relationship between the recognition performance and 

the value o f «. Being the largest database DB3 needed larger n-tuples because, when 

the number of training examples increases it generally becomes more difficult to find 

features o f low dimension that can distinguish between examples of different classes.

tuple-size, n
Figure 4.3 Performance of n-tuple network as a function of n-tuple size
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The value of n also plays important role determining the hardware memory 

space required ( 3.2) by the classifier. A balance has to be made between the memory 

size, the amount of training data and the value o f n. Experiment results, for instance, 

showed that a bigger size n is better, until it approaches an impractical large size, 

though a value of n =8  turned out to be enough for many applications [Rohwer and 

Lamb, 1993]. [Jorgensen, 1997] made use o f leave-one-out cross-validation (CV) 

[Hand, 1986] and found «=8  as the smallest tuplesize for the lowest CV error. 

[Rohwer and Morciniec, 1996] suggested 8 as a good choice for most data sets. For 

chosen database in this research n -8  gives reasonably good recognition performance 

of 80.93 [Azhar and Dimond, 2004a] with 150 tuples (R ). [Rohwer and Morciniec,

1996] argued that the recognition rates should become increasingly consistent with 

increase of the total number available tuples, R. From practical experience they found 

that the values of 100 to 1000 for R usually turned out to be adequate. [Jorgensen,

1997] reported error rates on the task of recognising handwritten digits for different 

values o f R and found better results for a higher value o f R. Reported error rates with 

935 and 807 tuples were 3.6% and 2.8% respectively. While choosing the value o f R 

the classification time has to be also looked at. [Jorgensen, 1997] found classification 

error rates with 807 tuples to be 30 ms and with 200 tuples to be 4 ms while running 

the code under Windows NT in a 90 MHz Pentium. The physical memory 

requirement o f the network also limits the choice of R. With 150 tuples, tuple size of 

8 and a 32 by 32 binary image the required memory will be 384000 bits (3.2). For a 

fixed n the value o f R has to satisfy the relation R > L/n (Section 3.3), so that enough 

tuples are available to cover the whole input matrix of size L.

4.4 Significance Testing
Once recognition performance have been gathered through experiments, statistical 

inference will allow us to assess evidence in favour or some claim about the
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population from which the sample of recognition rates has been drawn. The methods 

of inference used to support or reject claims based on sample data are known as tests 

of significance. Significance testing is necessary where data is gathered from a 

sample and not from the entire population. Significance testing tells us how confident 

we can be that the survey sample accurately reflects the views o f the entire 

population. A significance level is the probability that the result is true and not just a 

random variation. The t-test is a form of significance testing.

A t-test decides if the two data sets come from the same population (Case I in Figure 

4.4) or from different populations (Case II in Figure 4.4). The t-test measures the 

likelihood that two results being compared could have been found purely by chance. 

It does this by comparing the mean value o f two sets of data. The difference between 

two means is normally distributed for large samples.

4.4.1 Student’s T-test

Case I \s
\ \

Population 1

Population 1 Population 2

Figure 4.4 Cases in t-test
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The t-distribution approximates this normal distribution in large samples. For 

small samples, the distribution of differences in the mean is not quite normal. This 

discrepancy was noted by a quality control statistician at Guinness Brewing (W.S. 

Gossett) [Porter, 1986], Since quality control could involve only small samples, the 

statisticians required a test statistic that performed well for small samples. The t- 

distribution was widely used after this insight. Gossett and Pearson worked together 

for a short time and published their findings in 1896 (correlation/Pearson), 1900 (chi- 

square/Pearson) and 1908 (t-distribution/Gossett) [Porter, 1986]. Flowever, because 

the brewery did not allow employees to publish their research, Gossett's work on the 

t-test appears under the name "Student".

Every test o f significance begins with a null hypothesis H0. A hypothesis is a 

statement designed to be proven or disproven. Null hypothesis says there is no 

difference between the means. An alternate hypothesis, HA, is also set up, which is the 

hypothesis to be adopted if the null hypothesis is disproved. Case I in Figure 4.4 

represents the null hypothesis H 0, indicating that the mean of group one equals the 

mean of group two; both samples come from the same population. Case II represents 

the alternate hypothesis HA, indicating that the mean of group one does not equal the 

mean of group two; the two sample means are from different populations. A t-test 

decides which of these hypotheses to accept.

T-test assumes that the data are independently sampled from a normal 

distribution. The two means and the corresponding standard deviations are calculated 

by using the following equations (nA and nB are the number of measurements in data 

set A and data set B, respectively):

(4.1)
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(4.2)
X B  =

H B

z
/=1

S a =
(4.3)

(4.4)

S b = i= 1
t lB  -  1

Then, the pooled estimate o f standard deviation 5 ^  is calculated:

Sab
I (n.4 -  l),Sh2  + ( » / y - l ) ^

/Z/i + r iB  -  2

(4.5)

Finally, the statistic texp (experimental t value) is calculated:

x a  -  X B
exp

SabJ —  + —
V H B

(4.6)

value is compared with the critical or theoretical t value, tth, corresponding 

to the given degree of freedom, ‘d f  (in the present case d f  = nA + nB -  2) and the 

confidence level chosen. The confidence level is the percentage likelihood at which
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the test was carried out. Tables of critical t values can be found in any book of 

statistical analysis, as well as in many quantitative analysis textbooks. If texp exceeds 

the tabled value, the means are significantly different at the confidence level that is 

listed. texp>tth means that the null hypothesis, Ho, is rejected and the alternate 

hypothesis is accepted. However, if the experimental ¿-value, texp, had been less than 

the theoretical ¿-value, tth, the null hypothesis would have been retained. The higher 

the confidence level, the more certain one can be that there really is a difference in 

the two groups being tested. For example, 95% confidence means that there is only a 

5% chance that such a difference in scores could have been found purely through the 

effects of sampling.

Instead of comparing the texp and t,h to determine significant difference, one 

may also compare the alpha level and /»-values. An alpha level, a, is the probability 

that the null hypothesis will be rejected in error when it is true (a decision known as a 

Type I error, or "false positive"). It is the number of times out of 100 someone will be 

incorrect if  the null hypothesis is being rejected. If someone chooses an alpha level of 

0.05, 5 times out of 100 he/she will be incorrect if  the null hypothesis is rejected. 95 

times out o f 100 , he/she will be correct because it is more likely that the means come 

from two different populations (Case II). A /»-value,/?, is the probability of observing 

the given result by chance given that the null hypothesis is true. Small values o fp  cast 

doubt on the validity o f the null hypothesis. If the p-value is less than the alpha level, 

the alternate hypothesis is accepted. However, if  the /»-value was greater than the 

alpha level, p>a, the null hypothesis would be retained.

In Matlab [MathWorks, 2007] the following function performs a ¿-test to 

determine whether two samples from a normal distribution could have the same 

mean.

[H, P, Cl, STATS] = TTEST2(X, Y, ALPHA, TAIL) ( 4.7)
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The null hypothesis for the above function is //o="means are equal". For TAIL 

= 0 in equation (4.7) the alternative hypothesis, HAi is: "means are not equal". For 

TAIL = 1, Ha = "mean o f A is  greater than mean of Y". For TAIL = -1, HA = "mean of 

A  is less than mean o f T". The default value of TAIL in (4.7) is zero. ALPHA is 

desired significance level (ALPHA = 0.05 by default). P  is the /»-value. Cl is a 

confidence interval for the true difference in means. STATS is a structure with two 

elements named Is tat' (the value of the t statistic) and 'd f (its degrees of freedom). If 

equation (4.7) returns a zero value for H  then it indicates that the null hypothesis 

cannot be rejected at significance level o f alpha. If the value o f H  is returned as 1 then 

it means that the null hypothesis is rejected at significance level of alpha.
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Figure 4.5 Box plot
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4.5 Box Plot
A boxplot, or box and whisker diagram, [Chambers et a!., 1983] is a very 

useful tool for graphically portraying the empirical distribution of data. It gives a 

quick insight into the empirical distribution o f data and its statistics. [Tukey, 1977] 

invented box plots as a powerful way of summarizing distributions o f data. This 

graphical technique has been applied with success elsewhere [Yusta et al., 1998; 

Bounessah and Atkin, 1994; O'Connor and Reimann, 1993; Kiirzl, 1988], Boxplots 

are especially useful when comparing two or more sets o f data.

Figure 4.5 has several graphic elements: The lower and upper lines of the 

"box" are the 25th and 75th percentiles of the sample. The distance between the top 

and bottom of the box is the interquartile range. The 25th percentile is where, at most, 

25% of the data fall below it. The 75th percentile is where, at most, 25% of the data is 

above it. The line in the middle of the box is the sample median. The median is the 

point where 50% of the data is above it and 50% below it. If the median is not 

cantered in the box, then it shows an indication o f skewness. The "whiskers" are lines 

extending above and below the box. They show the extent of the rest of the sample 

(unless there are outliers). Assuming no outliers, the maximum of the sample is the 

top of the upper whisker. The minimum of the sample is the bottom of the lower 

whisker.

By default, an outlier is a value that is more than 1.5 times the interquartile 

range away from the top or bottom of the box. The plus sign at the top of the plot is 

an indication o f an outlier in the data. This point may be the result o f a data entry 

error, a poor measurement or a change in the system that generated the data. The 

point o f the notch in Figure 4.5 falls at the mean, and the height o f the notch 

corresponds to the 95% confidence interval [Streiner, 1997], which is defined as:

95%C7 = x ± 1 . 9 6 x S D (4.8)
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Where x is the mean, SD the standard deviation, and n is the sample size. 

Matlab’s [MathWorks, 2007] statistical toolbox has a function to produce notched 

box and whisker plots for distributions of data. In Matlab notches represent a robust 

estimate of the uncertainty about the medians for box-to-box comparison. Boxes 

whose notches do not overlap indicate that the medians o f the two groups differ at the 

5% significance level.

4.6 Software used
Software was written for various optimisation algorithms and the n-tuple network. 

C++ language was used to code algorithms. The results were obtained with the code 

running under Windows XP on a 2 GHz Pentium 4 machine with 512 MB main 

memory. Matlab’s statistic toolbox was used to perform Student’s t-tests and produce 

box plots. Results were also plotted with Microsoft Excel’s chart wizard.

4.7 Summary
This chapter explained the basic experimental procedure for experiments. Basic 

procedure involves in use of train-data to optimise the input connection of the n-tuple 

classifier and then to use the optimised classifier to recognize the test-data. Selection 

of NIST’s Special database 3 and 7 as train and test data respectively has been 

argued. The term ‘critical class’ has been defined and use o f ‘class-specific’ tuples to 

describe critical classes has been explained. Class-specific tuples are sought in the 

experiments. An optimum set of class-specific tuples eventually improves the 

recognition rates o f the classifier. It has been mentioned that the experiments are 

repeated several times to confirm the consistency in results. Testing the statistical 

significance o f the results are also important and it has been explained how student’s 

t-test and box plot can help on this regard.
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Chapter 5

Reward and Punishment Based Method

5.1 Introduction
Realizing the fact that the classification performance of the n-tuple classifier is highly 

dependent on the actual subset of the input bits probed [Bishop et al., 1990; 

Jorgensen et al., 1995], a novel approach was introduced based on a Reward and 

Punishment (RnP) scheme to select input mappings o f the classifier. Classes with 

high error rates were termed as critical classes and different groups o f tuples were 

formed for different classes. The strategy was to employ more number of tuples to a 

critical class-group than an easily distinguishable class. In order to illustrate the 

capabilities of the RnP based measure the task of recognizing hand-written digits 

from NIST [Wilkinson et al., 1992] database was chosen. Next section will explain 

the importance of class-specific tuples. Section 5.3 will describe the tuple search 

algorithm. Section 5.4 will explain the objective function and its formulation. 

Experimental outcomes will be presented in Section 5.5.

5.2 Class-Specific Tuples
This research was aimed to find an optimal set of input connections for the n-tuple

classifier to achieve higher recognition rates. The performance o f each connectivity
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pattern during search will be evaluated by a reward and punishment technique that 

will be explained in Section 5.4. Finding an input map that gives high scores for all 

classes will be extremely rare because there will be similar classes in the system and 

the overlapping region between similar classes will cause the discrimination task 

much harder. So there will be classes in the dataset which will be difficult to 

recognise and give low recognition rates. These classes can be termed as “critical” 

classes. One strategy to improve the discriminating power for a critical class would 

be to optimise or tune a sufficient number of tuples only for that class such that each 

tuple in that group can give high score for that class. Eventually all of these tuples 

when work together will try to improve the recognition rate for that critical class. This 

group of tuples tuned to a specific class is known as class-specific tuples.

5.3 Tuple Search Algorithm
A stochastic search algorithm was developed to find an optimum set of input 

connections to the n-tuple network. The unique strategy in the search algorithm was 

to reserve more tuples to a more critical class group (Section 5.2). The classes with 

high error rates were termed as critical classes. By using more class-specific tuples 

for a critical class the search algorithm would allow more time to be given to find 

features for a critical class. Before the search starts the total available tuples (R ) was 

distributed among classes proportionately to the error rates. To calculate the number 

o f class-specific tuples for a class at first the error rate o f that class was divided by the 

total error rate and then the result of the division was multiplied with the total 

available tuples (R ). The result of the multiplication was rounded to the nearest 

integer. No normalisation was used in the calculation of class-specific tuples. 

Providing more tuples to a class with a high error rate ensures that the extra care has 

been taken for a critical class group. Tuples engaged to a specific class best learn the 

features of that class and also learn some features for other classes to an extent. Thus
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a class-specific tuple can give scores for both its specific class and other classes when 

the performance of the tuple is evaluated by an objective function (Section 5.4). But it 

should recognise its specific class better than other classes. The pseudo code of the 

search algorithm is presented in Figure 5.1.

LET j = 0;//class index

Tf  = 0;//number of successful tuples in any 
iterat ion

p'j = number of tuples responsible to best 
describe class Cj ;

REPEAT

GENERATE ([Q-Tf] set of tuples randomly);

FIND SCORE (Q set of tuples based on class Cj); 

RANK (Q set of tuples based on their scores); 

CARRY (Tf set of successful tuples to next 

iteration);

IF (Tf = p'j)

THEN {

SAVE(p'j set of tuples as mature tuples); 

SET (j = j + 1, Tf = 0);}

UNTIL (j < number of classes);

F igure 5.1 P seu d o-cod e o f  R nP  based search
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To understand the search algorithm consider a class index j  to identify a class 

‘C /. Let us consider an objective function (Section 5.4) that gives scores for 

class-specific tuples. Let’s say Q is the total number o f tuples in any iteration. The 

target is to find R number of class-specific tuples in total. The distribution of R tuples 

among the classes is proportionate to the error rates. The more the class is critical, the 

greater number of tuples it gets.

Let us assume p  j  is the number of tuples that will be matured for class Q. 

Thus the summation of all p ’j  (Z p’j)  will be equal to R. Every iteration scores for Q 

sets of tuples are evaluated according to the objective function based on Q. So the 

RnP based objective function will give the scores only for the class Cj. Then Q sets of 

tuples are ranked based on their scores for the class Cj. The number of tuples, say Tf, 

whose scores are higher than a predefined threshold are treated as the successful 

tuples for a certain iteration and they are being carried to the next iteration by virtue 

o f their good scores. So in the next iteration only Q -Tf tuples will be created 

randomly. Before moving to the next iteration a check has to be made if the number 

o f successful tuples (Tf) have met the number o f class-specific tuples (p ’j ) in the 

class Cj. If T f = p j ,  then the mappings for these successful tuples will be saved and 

these tuples will be treated as the matured tuples those are specific for the class Cj. 

The whole process repeats until all matured class-specific tuples (Z p ’j  = R) for all 

classes have been sought and later these matured tuples will be used for the final 

recognition task.

5.3.1 Flow Chart of Tuple Search Algorithm

Figure 5.2 and Figure 5.3 show the tuple search algorithm in a flow chart. The 

algorithm started by creating Q number o f tuples randomly. The randomness in 

selection ensures that the tuples are mapped all over the input matrix. Now 

performance o f all tuples will be evaluated against an objective function. Based on
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F igure 5.2 F low  chart (P a r ti)  o f  R nP based T uple search algorithm
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F igu re 5.3 F low  chart (P art2) o f  R nP based T uple search algorithm
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the score given by each tuple, all the tuples will be ordered from high to low and then 

compared against a predefined threshold function. Tuples whose score are higher than 

the threshold will be successful (Tf) to go to the next iteration. At the end of each 

iteration the successful tuples will be counted and if the number is less than the 

required then the tuples those were not successful (score less than the threshold) will 

be remapped randomly to be evaluated in the next iteration. Performance of all tuples 

will be again measured against the objective function and all the steps will be 

repeated until required numbers o f tuples are sought for a specific class. The steps 

will be repeated for other classes too until class specific tuples for all classes are 

found.

5.4 Reward and Punishment Based Performance Measure
A trained classifier can either recognize or misclassify or reject a test pattern. In the 

reward and punishment (RnP) scheme [SimSes, 2000] a reward is associated with the 

correct recognition of the pattern and the penalties for misclassification and rejection. 

It takes account misclassification and rejection while measuring performance, where 

as standard error rates based cost function [e.g. CV error rate in Jorgensen et al., 

1995] ignores the difference between misclassification and rejection. Rejection will 

be less damaging than misclassification [Maltoni et al., 2003]. The reward and 

punishment concept has been used before in both weighted and weightless neural 

networks. In reinforcement learning [Sutton and Barto, 1998] actions are associated 

with rewards and punishment for ‘good’ and ‘bad’ behaviours [Ackley and Littman, 

1991]. [Aleksander, 1989] used a reward and punishment algorithm in an extended n- 

tuple model called ‘probabilistic logic node’ (PLN) [Penny and Stonham, 1990]. In 

addition to storing 0 or 1, a PLN memory location could be in a 'u' state, in which it 

was equally likely to output 0 or 1 when addressed. All locations are initially set to 

‘u’ (in PLN 1 means ‘Yes’ pattern is for that class, 0 means ‘N o’ pattern is not for
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that class as that pattern is counter example of that class, ‘u ’ means ‘don’t know’). 

After one o f the training patterns is presented to the net if  the output matches the 

desired output all the addressed locations are made to assume their current output 

(0/1) (Reward). In case the output the PLN network mismatches the desired output all 

the addressed locations are made to assume the “u” value (Penalty). This way the 

training continues until all training patterns are presented at the input. RnP algorithm 

described in this thesis doesn’t alter the memory values; rather it measures the 

performance of a trained tuple on the validation dataset. For this the whole pattern 

data are divided into three parts: training set, evaluation set and test set. Let us 

consider S/ is the total number o f samples for training the classifier, Se is the number 

o f samples available for evaluation purpose and St denotes the number of samples in 

the test data set. If S  is the total number o f available samples then S = Si + Se + S,. 

Now for optimisation purpose the network is trained with S/ and evaluated with Se 

dataset. For the final recognition task both the Si and Se are used for training the 

network and S, is used for testing. Finally, the dataset Se can be considered to have 

three parts: Sq, Srj  and Smj. Sq  is the number o f Cj samples correctly recognized, Srj  is 

the number of C, samples rejected and Smj denotes the number of Cj samples 

misclassified. Considering all these definitions the objective function for class Cj, 

denoted as Oji, will be evaluated by the following equation:

O n = Scj xPc + Srj X Pr + Smj X Pm (5.1)

Where Pc= Positive points associated with reward for recognition; Pm= 

Negative points for misclassification; Pr= Negative points for rejection; i= population 

index which varies from 1 to Q;j=  class index.

The point scheme for the objective function will be explained in the next 

section. As explained in the previous section, in every iteration the search algorithm 

selects the number o f tuples as the successful tuples according to a threshold.
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Consequently a threshold function was developed for the system, which is shown in

(5.2):

Threshold = max[o jj (t))x (/ -  k (t)) (5.2)

ii "r
'

(5.3)

Time -------------►

Figure 5.4 Exponential decay of threshold function

In ( 5.2) m ax\0n(t)) is the score o f the best-performed tuple among all the

tuples in the current iteration. The value of k  sets a percentage o f m ax(o -(/)) which

is the minimum score a tuple has to have to become successful in the current 

iteration. To accelerate searching, k can be varied over time according to (5.3). Both 

max (<9,,.(/)) and k are time dependent. The same value o f max(ofl (/)) may sustain for

several iterations but the k  will change in every iteration. Figure 5.4 illustrates a
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fictitious search scenario where there are three time intervals: T l, T2 and T3. In the 

example m ax(p/t (/“)) has different values increased in three stages. In every stage

“Threshold” exponentially decreases according to the equation ( 5.2) and ( 5.3) 

where z should be chosen suitably to set the exponential decay o f the threshold over 

iterations. An equation similar to (5.2) was used in the simulated annealing algorithm 

[Bishop et al., 1990], where initially large random jumps across the search were 

allowed and then the size of the possible jumps was reduced exponentially. Thus in 

SA the use of decay equation (5.2) allows the whole search space to be probed at the 

very initial stage, so as to find the general area of the optimum position. Like any 

other stochastic search, the RnP based search will produce better results if more time 

is spent on searching. So the value o f z should be carefully chosen and varied 

throughout the search as a trade-off between the performance and the speed.

5.4.1 Point Scheme for RnP

The point scheme determines what values should be set for Pc, Pm and Pr in ( 5.1). In 

general a rejection is thought to be more favourable than a misclassification. It is 

equivalent to the system getting confused rather than making the wrong decision. To 

find out what should be the point to set for the reward consider a point for 

misclassification as Pm = -1 . If J  is the criterion deciding minimum number of 

samples of the class Cj that must be recognized by one individual tuple to maintain a 

predefined minimum score, say Omin, then the value o f Pc can be found by the 

following formulae:

J  X Sc, X Pc + Pm X Sej(l ~ J) = Omin ( 5.4)

In the above formulae Sej is the number of samples available to evaluate a 

specific class j .  Sej is the part of the evaluation data set Se, where Se = ^  Sej . J  in
j
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(5.4) is a value in percentage and Omin is a pre-set minimum score. If Omin is set to 

500, J= 5%, Sej =500 and P„,=-1; then Pc comes out as 39. So rewarding points should 

be 39 for a recognition of a pattern when Pm=-1. As rejection is more favourable than 

misclassification P, can be set empirically as -0.5. J= 5% indicates that the pattern is 

so complex that even when the least 5% of the samples o f the evaluation data set is 

recognized by a single tuple, the evaluation function will give a minimum score of 

500. A tuple with larger tuple-size has the more ability [Section 3.3.1] to recognize 

patterns. So for a larger tuple-size higher percentage of J  can be chosen. It is more 

convenient to choose a lower value in J ,, as it works for both larger and smaller tuple- 

sizes.

5.5 Evaluation of RnP Optimisation
The proposed stochastic search method was applied to recognize handwritten 

characters from the NIST database. The partition hsf_{0} (Section 4.2.1) of the 

Special Database 3 was used for training and the partition hsf_{4} (Section 4.2.1) 

from the Special Database 7 [Wilkinson, 1992] was used for testing. NIST 

recommends using images of hsf_{4} for testing as they are more difficult from other 

partitions and this ensures the heterogeneity between the training and testing set (see 

analysis in [Wilkinson et al., 1992]), a fact which is reflected in the results. The 

numeric data set consisting only the digits (0,1...9) was used for the experiments. 

Each character is a binary image with the dimension 32 by 32. All digits are scaled 

into same dimension and centred. In the partition hsf_{0} there are 1000 images per 

class for training and in the partition hsf_{4} there are 1000 images per class for 

testing. For the experiments the total train samples were again divided into two halves 

by the holdout method [Hand, 1986] and one part (Si) was used to train the network in 

the evaluation phase and other part (1S'e) to evaluate the RnP based objective function.
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After finding the mature tuples, all training images (S/ + Se) o f hsf_{0} were used to 

train the classifier and the images from hsf_{4} were used to test.
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Figure 5.5 Class-wise comparison of recognition rates

Table 5.1 Distribution of Class-specific tuples among various classes

Class 0 1 2 3 4 5 6 7 8 9

Error
rates 2.9 54.8 7.6 9 13.25 31.5 10.1 31.9 13.7 19.25

Class-

specific P ' 0 = p ' l  = p ' 2 = p ' 3 = P ' 4 = p ' 5 = P'6= P ' 7 = P ' 8 = P ' 9 =

tuples 2 42 6 7 10 24 8 25 11 15
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T able 5.2. E xperim en tal Settings for R nP O ptim isation

Parameters Values

Time constant (5.3), r 100

Constant (5.4), J 5%

Point for misclassification, P,„ -0.5

Point for rejection, Pr -1

Point for reward, Pc 39

Population size, Q 200

Total train images (Si + Se) 10,000

Total test image , St 10,000

Images per class to evaluate, Sej 500

Table 5.3 Improved overall recognition rate by RnP based optimisation

Average Best
Methods Recognition Recognition

Rate (%) Rate (%)
Conventional randomly selected n- 80.93 82.83

tuple (in 2000

[Bledsoe and Browning, 1959] runs)

RnP Based 83.67 84.5

Stochastic approach (in 10 runs)

Two experiments were performed. The first one was to demonstrate how the 

recognition could be improved for a class when all the tuples in the network are tuned 

only for that particular class. In total 140 tuples were used for the network with the 

tuple-size of 8 bits. The number 140 was chosen empirically but it satisfies the 

relation R > L/n (in Section 3.3) for a 32 by 32 binary image. The results are shown
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in the Figure 5.5. It can be seen that character 1 is the most critical class to be 

recognized in the NIST database. For the random case the recognition of class 1 was 

45.26, which was the mean of 2000 runs. The RnP based optimisation improves the 

recognition o f class 1 by 19.66% (Figure 5.5). It improves the recognition rate for 

class 5 by 15.56%, class 7 by 11.02% and all other classes by several percentages. 

The recognition rates found by RnP based search correspond to the mean of ten runs.

The second experiment was required to demonstrate the improvement of the 

overall recognition rate by the stochastic search method. The overall rate was the 

average o f all recognition rates of all classes. The total number o f tuples for the 

experiment was 150 with the tuple-size 8 bits. Tuples were distributed among classes 

proportionately to the error rates of the classes. Table 5.1 reports the error rates of ten 

classes from character 0 to 9. It also presents the number of class specific tuples for 

each class. The method of calculating class-specific tuples was described in Section 

5.3. Being the most critical class, character 1 gets 42 tuples out of 150. The randomly 

selected network was run for long enough (2000 iterations) to give it a chance to find 

better input maps that could be comparable with the maps found by the stochastic 

search. The best overall recognition rate by the random network was found to be 

82.83% and the average rate was 80.93%. In case of stochastic optimisation (Table 

5.2), the average overall recognition was 83.67%, which was 2.74% superior to the 

random case proposed by [Bledsoe and Browning, 1959], The results were obtained 

with the code running under Windows XP on a 2 GHz Pentium 4 machine.

5.5.1 Students t-test results between RnP and basic n-tuple

The Student’s t-test (Section 4.4.1) assesses whether the average recognition rates by 

any two algorithms, say X  and Y, are statistically different from each other. The null 

hypothesis for the test was ““average recognition rate by the RnP (X) is higher than 

conventional random selection (7)”. The degree of freedom (Section 4.4) for the test
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was 18 as each algorithm was run for 10 trials. In the t-test, a t-value was calculated 

against the null hypothesis and compared with the tabulated values at different 

confidence levels with 18 degrees o f freedom. By convention [Deacon, 2006], we say 

that a difference between means at the 95% confidence level is "significant", a 

difference at 99% level is "highly significant" and a difference at 99.9% level is "very 

highly significant". Tabulated t-values for 95%, 99% and 99.9% at 18 degrees of 

freedom were found to be respectively 2.10, 2.88, and 3.92. So if the calculated t- 

value exceeds the tabulated t-value of 3.92 it can be claimed that the difference in 

recognition rates between the RnP and random selection approaches was statistically 

“very highly significant”. The calculated p-value indicates the probability of 

observing the result by chance, given that the null hypothesis is true. Small values of 

probabilities cast doubt on the validity of the null hypothesis. The p-value between 

the RnP and random selection approach was 1, which indicates that the null 

hypothesis “average recognition rate by the RnP (X) is higher than random selection 

approach (T)” is extremely valid. The calculated t-value (texp in Section 4.4.1) for the 

null hypothesis was 7.98 and it exceeded the tabulated value (6/, in Section 4.4.1) of 

3.92 at the 99.9% confidence. The result indicates that the increase in recognition rate 

by RnP based approach over traditional n-tuple method is statistically “very highly 

significant”.

Figure 5.6 displays the side-by-side box plots of RnP and random selection 

process. Box plots (Section 4.5) are an excellent tool for conveying location and 

variation information in data sets, particularly for detecting and illustrating location 

and variation changes between different groups of data. In the experiment data 

samples o f a particular algorithm were recognition rates observed from the ten trials 

o f that algorithm. Thus each box in Figure 5.6 was constructed with the recognition 

rates of ten trials. The notches in the figure are drawn about the median so that, 

notches which don't overlap represent significant differences between medians (with
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95% confidence). In Figure 5.6 the RnP clearly exhibits a significantly higher median 

than the conventional random selection. Box plots also show if there are unusual 

observations (outliers) in the dataset. One unusual observation was plotted for the 

random selection.

Figure 5.6 Box Plot of RnP and Random selection

5.6 Summary
This chapter presented the implementation of a new stochastic search strategy in 

finding an optimal set o f n-tuples. The uniqueness in the algorithm was to distribute 

the total available tuples among the classes according to the error rates. Thus a
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difficult class gets more attention by the algorithm. The RnP method spent more time 

in finding features of a difficult class than an easily recognisable class. The optimised 

network was tested on a handprinted database. Results showed an improvement of 

2.74% in recognition rate by the RnP based approach over the conventional randomly 

selected method. The improvement was statistically very highly significant. This 

chapter is a good reference to realize the underlying methodology of the RnP based 

stochastic process for the n-tuple classifier. The proposed RnP method improved the 

recognition success at some small cost to the training speed. The high speed of the 

basic n-tuple network makes it entirely practical to carry out the pre-processing task 

of selecting input maps to find the suitable ones.
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Chapter 6

Particle Swarm to Optimise n-tuples

6.1 Introduction
This chapter will investigate the implementation o f the PSO on the n-tuple network to 

optimise the input connection mappings. Among different optimisation techniques the 

Particle Swarm Optimisation [Kennedy and Eberhart, 1995] exhibits good 

performance in finding solutions to static optimisation problems [Parsopoulos et al., 

2001a; Parsopoulos and Vrahatis, 2001b]. Being successfully applied in many areas 

like function optimisation, artificial neural network training [Parsopoulos and 

Vrahatis, 2001b; Settles and Rylander, 2002] or fuzzy system control [Esmin et al., 

2002], the PSO seems to be a good candidate to find optimal set o f input maps for the 

n-tuple network. This chapter will describe how the particle swarm can be applied on 

the n-tuple network. Learning strategy of the n-tuple network by PSO will be 

explained. Different parameter settings of the PSO will be reported in Section 6.6. 

Section 6.7 will give the results of the experiments by the particle swarm optimised 

network. Genetic Algorithm will be applied on n-tuples to compare against the PSO. 

Performances, similarities and differences between the PSO and GA will be discussed 

in Section 6.8.
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6.2 Particle Swarm on n-tuples
When the particle swarm is applied on the n-tuple, the “tuples” of the n-tuple can be 

termed as “particles”. Thus each particle corresponds to an input connection map of 

the n-tuple network. The size of an n-tuple network is defined by the total number of 

tuples it is built with. Total number o f tuples, denoted by R, is the number of tuples 

available to be optimised by particle swarm. R depends on the network’s structure. 

The particle swarm technique makes use o f a population of particles or input-maps 

(for n-tuples), where each particle has a position, a velocity. The PSO formulae, as 

shown in equation (2.1) and (2.2) define each particle as a potential solution in a 

multi-dimensional search space.

The dimension of the PSO corresponds to the bits or the tuple-size (Section 

3.3) of each tuple. As the tuples are bits, so the PSO will be n dimensional with 

the z'-th particle represented as Xf=(Xii,Xi2,--Xin). The PSO remembers the best position 

found by any particle which is known as global best, denoted by Pg. Additionally 

each particle remembers its own previously best found position designated as 

Pi=(Pn,Pi2> ■■■Pin) and its velocity V,= (Vl!t Vi2,... Vin). Equation (2.1) and (2.2) will 

define the velocity and position of the z-th particle with r/-th dimension. For example 

for the particle with index 1 and dimension 3 the equations will be:

V i,3 (t + 1) =  co x V 1,3 (t) + y/ \ x  ran l x  ( P i,3 -  X  1,3(0) ( 6.1)

+ y/2 x ran 2 x (P g3 -  X  1,3(0)

X  1,3{t + 1) = X  1,3(0 +  V 1,3(t + 1) ( 6.2)

The PSO starts with a population of randomly generated particles (say Q) and 

detects the optimal solution through co-operation and competition among the 

individuals of the population. Every iteration a particle evaluates its position relative
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to a goal or fitness. The velocity of each particle is updated by being pulled in the 

direction of its own previous best position and the best o f all positions reached by all 

particles so far. Constants y/land y/l in ( 6.1) determine the relative influence of the 

“individuality” and “sociality” traits of the particles and are usually both set the same 

to give each component equal weight as the individual and social learning rate. The 

constant co is the inertia weight described by [Shi and Eberhart, 1998a]. The ‘ra n i’ 

and Van2’ are realizations of uniformly distributed random variables in {0, 1}.

6.3 Fitness Measure in PSO
The quality o f particles is measured using a fitness function that reflects the 

optimality of a particular solution. The selection of fitness function depends on the 

problem types. For a classification problem, the rate o f misclassified patterns can be 

viewed as the fitness value. The equation (5 .1) described in the previous chapter was 

point-based function that incorporated a reward (positive points) for correct 

recognition o f the pattern and the penalties (negative points) for misclassification and 

rejection. For consistency the fitness function is the same as for RnP optimisation 

described in Section 5.4. The position with the highest fitness value in the entire run 

is called the global best, Pg. Each particle also keeps track o f its highest fitness value. 

The location o f this value is called its personal best. If any fitness is greater than the 

global best, then the new position becomes Pg and the velocities are accelerated 

toward that point. If a particle’s fitness value is greater than its personal best, then 

‘personal best’ is replaced by the current position and the particle is accelerated 

toward that position. Another point called the local best (Ibest) is sometimes used. This 

is the position o f the highest value from a small group o f particles. The size of the 

group is usually about 15% of the population size. Particles are accelerated toward 

Ibesi from their respective group. This technique, however, was not used in this 

research.
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Figure 6.1 Influence of global best and particle’s own best

Time -------------►

Figure 6.2 More particles above threshold as the time goes
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Figure 6.1 shows how a particle’s current position, X/t), is influenced by that 

particle’s previously found best position ,Pi} and best position of all particles (Pg). 

The dotted circles in the figure illustrate the influence o f global best and particles 

own best. Particles current position is changed towards both Pj and Pg to account that 

influence. Fitness function that identifies Pg and P, was described in Section 5.4. The 

same exponential threshold function ( 5.2) was used to set a decaying boundary in 

accepting solutions during search. A solution, which has a score above the threshold, 

will be considered as an acceptable solution.

Figure 6.2 shows fictitious case where white particles are the unsuccessful 

particles and the black ones are the particles whose fitness values are higher than the 

threshold value. In the figure there are three time intervals and it shows how fitness 

threshold exponentially decays in each time interval based on equation ( 5.2) and

(5.3). As the time goes the threshold decays and this allow more black particles to 

come above threshold.

6.4 Learning Scheme by PSO
The learning scheme basically selects better n-tuples in an iterative manner. At each 

iteration particles with the fitness near to the maximum value, defined by the particle 

which is at the global best position, are kept. The definition of what is "near" is 

gradually tightened with iterations as the particles “flying” through the multi

dimensional search space. The particle swarm searches optima in the solution space 

and shrinks the search area step by step. It refines its search by attracting the particles 

to positions with good solutions. Like before (Section 5.3) the total available tuples 

(R) were distributed among classes proportionately to the error rates [Azhar and 

Dimond, 2004a], Thus different classes had different number of class-specific 

particles. For this, each class has its own PSO to find the required number o f class- 

specific particles. Pseudo code for the PSO based learning strategy is given below:
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LET j= 0; //class index

W= Width of a binary image;

H=Height of a binary image;

Q= Population size;

i = particle index; // varies from 1 to Q

R=Total number of available tuples to be optimised;

//depends on network structure 

Xi,d=Particle' s current position;

Pi,d= Particle's previously best found position;

Pgd= Global best; //best position visited so far by

any particle

Pf = 0; //set of particles defined by particles

//best positions so far and whose fitness 

//values are higher than a threshold 

p'j = number of tuples responsible to best describe 

class Cj;// E p 'j=R

REPEAT

WHILE (Pf < p'j)

{RUN PSO {

For i=l to the population size Q,

For d=l to the problem dimensionality n,
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Apply velocity update equation,(2.1)

Limit magnitude of velocity (2.5)

Update Position by applying equation (2.2) 

Limit position applying equation (2.6), 

where Xmax= WxH and Xmin=l,

End-for-d;

Compute fitness of Xi;d(t + 1) based on class C j , -  

If needed, update historical information 

regarding Piid and Pgd;

End-for-i;}

RANK (All "Pi"s based on their fitness values);

FIND (Pf);}

SAVE (p'j set of particles as "mature" particles);

SET (j = j + 1, Pf = 0) ;

UNTIL (j < number of classes);

To understand the learning scheme, consider a class index j  to identify a class 

‘C /. The fitness function is described by ( 5.1) which gives scores for class-specific 

particles. Let’s say Q is the total number of particles (population size) in any 

iteration. The target is to find R number o f class-specific tuples in total. The 

distribution of R tuples among the classes is proportionate to the error rates. Let us 

assume p 'j  is the number o f tuples that will be matured or optimised only for the class
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Cj. Thus the summation of all p 'j  (Tpy) will be equal to R. Pi is defined as the 

particle’s previously best found position so far. At the end of each iteration, all 

particles defined by their best positions (P,) are ranked based on their scores for the 

class Cj. Among these ranked particles P f  numbers o f particles have scores higher 

than a predefined threshold ( 5.2). Before moving to the next iteration a check has to 

be made if P f  has met the number o f class-specific tuples (p 'j) in the class group Cj. If 

not, the PSO will be run to generate a new set of particles for the next iteration. If P f  

= p'j, then the mappings for these successful particles will be saved and these 

particles will be treated as the matured tuples those are specific for the class Q. The 

whole process repeats until all matured class-specific tuples (Zp'j = R) for all classes 

have been sought and later these matured tuples will be used for the final recognition 

task.

6.4.1 Flow Chart of the PSO based Tuple Search

Tuple search algorithm that we explained in the previous section is being illustrated 

in the flow chart in Figure 6.3 and Figure 6.4. The algorithm starts with the Q 

particles, initially randomly created. The Q particles are distributed randomly over the 

whole pattern matrix. Next the fitness of each particle is measured according to the 

fitness equation ( 5.1).

Based on fitness results each particle’s best positional values are updated. 

iPi,d defines the location along the dimension d of the best positional value of each 

particle in the history. So ‘/V s represent best positions of all particles so far. Next in 

the flow chart fitness o f all P, particles will be compared with a fitness threshold 

defined by equation (5.2).
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Figure 6.3 Flow Chart (Parti) of the PSO based search algorithm
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Figure 6.4 Flow Chart (Part2) of PSO based search algorithm
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Particles whose fitness will be equal or higher than the threshold will be 

defined as the optimised particles for the current iteration. As the threshold varies 

from iteration to iteration, particles those are found as optimised in the current 

iteration may not be found as optimised in the next iteration. Next in the flow chart 

the algorithm checks if the total number o f particles for a class has been found or not. 

If not found then the particles velocities and positions will be updated to explore new 

locations in the search space. After finding all optimised particles for a class the index 

of the class will be increased and tuples for the next class will be sought. At the 

beginning o f searching for the next class a new population o f Q particles will be 

created randomly over the input pattern matrix. Once all the particles are sought for 

all classes the optimisation task will be completed and an optimal set of R maps will 

be found. These R maps will be used as input connection maps o f the n-tuple network 

to recognize characters.

6.5 Parameter Settings
Particle Swarm Optimisation has certain parameters that require tuning to work well. 

This is also the case with other stochastic search algorithms e.g. for the tuning of GA 

mutation rates. No optimal parameter setting applies to all problems and tuning these 

parameter settings can result large performance variances. This problem is magnified 

in PSO where modifying a PSO parameter may result in a proportionally large effect 

[Lovberg, 2002], For example, increasing the value of the inertia weight, co, will 

increase the speed of the particles resulting in more exploration (global search) and 

less exploitation (local search). On the other hand, decreasing the value of co will 

decrease the speed of the particle resulting in more exploitation and less exploration. 

Thus finding the best value for co is not an easy task and it may differ from one 

problem to another. Some parameters are crucial and some could be optional. 

‘MAXITERATIONS’ is an optional parameter which sets a limit on the number of 

iterations to be executed before terminating a search. ‘THRESHOLD’ sets the
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acceptable error level. A solution falling within THRESHOLD distance of a specified 

value would be considered an acceptable solution and the search would be 

terminated. The problem presented in this thesis was to optimise input connection 

maps of an n-tuple network by the PSO algorithm. The network was built out of 150 

tuples with tuple-size 8. So the problem was 8 dimensional with f?=150. For a 32 by 

32 binary image (character) the image resolution was 1024 bits (3.1). When PSO was 

applied to search optimal set o f connections for a specific class group, the values and 

choices of some PSO parameters were found to be very crucial. Following sections 

will discuss the chosen values o f some of the important parameters.

6.5.1 Swarm size

Swarm size depends on the swarm termination criteria. If PSO stops after a fixed 

number o f iterations, a choice has to be made, either choosing a larger swarm or 

having more iterations [Van den Bergh and Engelbrecht, 2001], For the problem in 

this research the termination criteria was not based on iterations. The goal was to find 

a fixed number of particles whose fitness values were higher than a predefined 

threshold value. Thus the proposed PSO can stop at any iteration as soon as it finds 

the required number o f matured class-specific particles (p 'j  in Section 6.5). Imagine 

the case where there are only few class-specific tuples to be found. Because o f fewer 

numbers o f tuples the PSO might terminate in few iterations and due to this early 

termination there is a high possibility that the whole swarm might stuck in a local 

minimum. For a binary image of 32 by 32 dimension the size of the input vector, 

denoted by L, is 1024 (Section 3.3). Now for an 8 dimensional problem (n=8) to have 

more possibility that the swarm can pass over the entire input vector o f 1024 bits even 

in a few iterations a suitable population size would be 200 (Q). In most o f the 

experiments presented in this thesis the population size of 200 was used. A 

population size o f 1000 was also tested but it showed a very slowly convergent 

system without any noticeable difference in performance.

109



6.5.2 Swarm Velocity

Due to the tendency for some particles to experience explosive growth in velocity, a 

Fmax can be introduced which is an arbitrary cap placed on the magnitude of any 

particle’s velocity. Vmax is the step size o f the swarm, the maximum distance a particle 

can travel in an iteration. Results in [Lovbjerg, 2002] show that in general performance 

improves as Fmax shrinks. It was necessary to clamp the velocity of a particle to the 

range {-Vmax, Vmax} to prevent the PSO from leaving the search space. The value of 

Vmax proved to be crucial, because large values could result in particles moving past 

good solutions and create excessive crowding or bumping around the best fit particle. 

Higher bumping could result in forming similar particles that would obstruct the 

exploration o f new features in an image, causing premature convergence [Eberhart et 

al., 1996]. In the experiments the Vmax of 2 was observed to be a good value to fine- 

tune the entire search space with 200 particles. Setting the value of Vmax to 40 

returned poor recognition rates and this will be shown in an experiment in a later 

section.

6.5.3 Inertia Weight

The inertia weight is employed to control the impact o f the previous history of 

velocities on the current velocity. In this way, the parameter «regulates the trade-off 

between the global (wide-ranging) and local (nearby) exploration abilities of the 

swarm. A large inertia weight facilitates global exploration (searching new areas), 

while a small one tends to facilitate local exploration, i.e. fine-tuning the current 

search area. A suitable value for the inertia weight «usually provides balance 

between global and local exploration abilities and consequently a reduction on the 

number of iterations required to locate the optimum solution. In 1998 Shi and 

Eberhart investigated modifications [Shi and Eberhart, 1998b] to PSO to improve the 

algorithm’s local search characteristics. In a modified PSO they introduce«, their
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inertia factor, to dampen the velocities of the particles. Although they discuss <yas 

being implemented in both constant and time dependent variations, the latter, as a 

linear decreasing function of time, showed the most promise. Thus a time decreasing 

inertia weight value can be a good choice as used by [Lovbjerg and Krink, 2002] 

where inertia parameter was decremented linearly with number of iterations from 0.7 

to 0.4. As the PSO presented in this thesis could terminate at any iteration, the inertia 

parameter was chosen to be a constant value o f 0.7.

6.5.4 Cognitive and Social Parameter

The cognitive (^1) and social (i//2) parameters are not critical for PSO’s 

convergence. Dropping the social component from equation ( 6.1) results in the 

Cognition-Only Model ( 2.3), whereas dropping the cognition component defines the 

Social-Only Model ( 2.4). In [Kennedy, 1998], Kennedy asserts that the sum of the 

values o f the cognitive and social components o f the PSO {y/\ and y/2) should be 

about 4.0, and common usage is to set them each 2.05 each. However, in an earlier 

work [Kennedy, 1997], Kennedy also looked at models where the two components 

had varying values, specifically, zero for the social component (cognition-only 

model), zero for the cognitive component (social-only model), and setting the two 

equal (full model). In that work, he found a performance advantage to the social-only 

model. Typically both the cognitive and social parameters are set to a value of 2 

[Eberhart et ah, 1996], although assigning different values sometimes leads to 

improved performance [Suganthan, 1999]. In most o f the experiments presented in 

this thesis both the values were set to 1. Setting the values to 2 made no noticeable 

difference.

6.6 Overall recognition rates by PSO
The particle swarm was applied to optimise the input connection maps of the n-tuple

classifier. The network was built out of 150 tuples with the tuple-size 8. The task was
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to recognize handwritten characters from the NIST database. The numeric data set 

consists o f digits was used for the experiments. Each character was a binary image 

with the dimension 32 by 32. The target of each optimisation method was to find 150 

input maps or tuples with reasonably high fitness values for different classes. 150 

maps were distributed among 10 classes according to the difficulty associated with 

each class to recognize it. So the most difficult class gets the highest number of tuples 

to be optimised. The strategy was to distribute the total available tuples (R=150) 

among classes proportionately to the error rates. The overall recognition rates, the 

average o f all recognition rates o f all classes, were sought. The overall recognition 

rate by PSO was compared with the RnP and randomly selected approaches described 

in the previous chapter. The rates found by all approaches were mean o f ten runs. The 

best recognition rate by any algorithm in ten runs was also recorded. All training 

methods are listed in the Table 6.1. The first training approach in the table, which is 

the random selection process of tuples, is the conventional way of training an n-tuple 

network. The second approach shown in the table is the hill climbing type stochastic 

process as described in [Azhar and Dimond, 2004a], Results corresponding to the 

pure particle swarm based training are listed in indexes 3 and 4 of Table 6.1. The 

PSO had no neighbourhood restriction, meaning that each particle can affect all other 

particles. Swarm velocity also plays important role. In the experiments the Vrnax o f 2 

was observed to be a good value to fine-tune the entire search space with 200 

particles. Setting the value of Vmax to 40 returned poor recognition rates as shown in 

indexes 4 of Table 6.1.

The best-performed PSO (index 3 of Table 6.1) was compared against a 

second algorithm from Table 6.1 and results were tabulated in Table 6.2. The null 

hypothesis for the test was “average recognition rate by the PSO (X) is higher than 

any second algorithm (T)”. Degrees o f freedom (Section 4.4) for the test were 18 as 

10 runs for each algorithm was used. In the t-test (Section 4.4.1), a t-value was
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T able 6.1 R ecogn ition  rates o f  n -tuple netw orks w ith  O ptim ised  T uples

Index
Training algorithm for n-tuple 

network
Total available tuples, R=150 and 

tuple-size, n=8

Average 

Recognition 

Rate (%)

Best
Recognition 

Rate (%), 
in 10 runs

1 Conventional random selection 

approach [Bledsoe and Browning, 

1959]

80.93 82.83

2 RnP based stochastic approach 

[Azhar and Dimond, 2004a]

83.67 84.50

3 PSO 0 1 = 1 , i//2=l,Vmax=2, 

co =0.7,0=200)

84.82 85.35

4 PSO {y/\=l, y/2 —1, Vmax =40, 

co =0.7,0=200)

82.78 83.76

Table 6.2 Results of Student’s t-test between PSO (X) and a second algorithm(T)

Index from 

Table 6.1
Algorithm Y

texp"

value
p-value

1 Conventional random selection approach 14.87 1.00

2 RnP based stochastic approach 5.06 1.00

4 PSO {y/\=\, y/2 =1, Vmax =40, 

co =0.7,0=200)

9.08 1.00
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calculated against the null hypothesis and compared with the tabulated values at 

difference confidence levels [Kreyszig, 1970] with 18 degrees of freedom. To 

understand the significance of the result the t-values in Table 6.2 have to be looked at. 

The values show that the increases in recognition rates by the PSO (index 3 in Table 

6.1) over the conventional random selection, the RnP based stochastic approach and 

the version of the PSO with a high Vmax (index 4 in Table 6.1) are statistically “very 

highly significant” as the observed t-values for all of these cases were greater than 

3.92 (tth). The p-value in Table 6.2 indicates the probability o f observing the result by 

chance, given that the null hypothesis is true. Small values of probabilities cast doubt 

on the validity of the null hypothesis. The p-values in Table 6.2 for all the cases were 

1, which indicates that the null hypothesis “average recognition rate by the PSO (X) is 

higher than any second algorithm (Y)” is extremely valid.

Figure 6.5 Box Plots of PSO, RnP and Random selection
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The above figure visually compares the samples o f recognition rates observed 

by applying three different approaches. The median of a distribution is shown as a 

line across the box in the figure. The median o f recognition rates for PSO can be 

noted from the figure as near 85%, for RnP near 84% and for randomly selected 

approach near 81%. Clearly the distribution of results for PSO is clustered in the area 

with reasonably higher values of recognition rates and it shows better performance 

than the other two. The box plot of PSO also shows an unusual observation or outlier 

likewise the random selection approach.

6.7 Comparing PSO with GA
Results in the previous section showed how Particle Swarm (PS) could successfully 

find an optimal set o f input maps. Like swarm intelligence the Genetic Algorithm is 

also a population based search technique and seems to be a good candidate to find 

input maps for n-tuples. GA has proven to be accomplishing the same goal as the PS 

optimisation [Kennedy and Spears, 1998], It is also important to investigate the 

similarities and differences between the two algorithms for optimising n-tuple 

network. To do this task the GA will be applied to search for better maps of n-tuples 

for recognizing binary handwritten characters. Exactly same experimental set-up 

(Section 6.6) will be used for GA as it was used for the PSO, only difference will be 

the search algorithm. GA based tuple selection technique will be explained in the next 

section. Later this algorithm will be used to find the recognition rates for handwritten 

characters and it will be compared against the rates for the PSO. The foundations, 

differences and relative performance of the GA and the PS based optimisation for n- 

tuples will be investigated. Alongside the performances the convergence properties 

for both the algorithms will be compared too.
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6.7.1 GA Based Tuple Selection

Genetic Algorithm introduced by [Holland, 1975] is an adaptive search strategy based 

on a highly abstract model of biological evolution to find a possible solution in a 

given problem space. It consists of a number of individuals refining their candidate 

solutions by interaction and adaptation. The individual is termed as ‘chromosome’. 

For an n-tuple network each chromosome corresponds to each input map. If each map 

points to “/? ” locations of the input matrix then the chromosome will be formed with 

these n location-values called “genes” [Holland, 1975]. While GA is applied to the n- 

tuple network, a population of individual input maps is initialised and then evolved 

from generation t to generation t + 1 by repeated applications of fitness evaluation, 

selection, recombination and mutation.

Table 6.3 GA Operators

Number of fit 

tuples or maps or 

chromosomes

Number of 

parent
chromosomes

Crossover

probability

Mutation

rates

1 1 1 87.5%

2 2 0.5 75%

3 3 0.33 62.5%

4 3 0.33 62.5%

5 or more 4 0.25 50%

Initial population o f maps is generated at random. Every evolutionary step

(generation), the input maps in the current population will be evaluated according to
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some predefined quality criterion, referred to as the fitness, which is equated with 

goodness o f solution. A simple function (5 .1 ) was used to measure the fitness. It is 

important to keep the fitness function simple as this does not eliminate the autonomy 

of evolution [Floreano and Mondada, 1996], Any map that has a fitness value greater 

than a threshold ( 5.2) is considered as a fit map or tuple. All fit maps in the current 

generation are passed to the next generation without any modification. This helps 

passing the goodness of one generation to pass to the next generation. Maps that are 

not fit undergo crossover and mutation operation of GA. Before crossover partner 

selection is implemented. Selection is the competition among individuals of the 

population to become parents of the next generation. The fitter a member of a 

population the more likely it is to produce an offspring. Section 2.5.3 explained 

different selection techniques.

a gene or 
location

Offspring after crossover

(Crossover)

Offspring after mutation

locations are mutated 
with random values.

Figure 6.6 Crossover and mutation in Tuples
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Figure 6.7 Flow Chart (Parti) of the GA based search algorithm
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Figure 6.8 Flow Chart (Part2) of GA based search algorithm

The partner selection strategy followed for this research was as simple as 

choosing the top two, three or four input-maps with high fitness values as the parent 

chromosomes. This selection process is known as ‘elitism’ and was described in
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Section 2.5.3. Elitism requires that the current fittest member (or members) o f the 

population is not deleted and survives to the next generation [Tomassini, 1995], How 

many chromosomes will be considered as parent chromosome will depend on the 

number of fit input maps at the current iteration. A conditional check was made at 

partner selection stage. If there were 5 or more fit tuples then the top 4 tuples were 

selected as parent tuples. For 3 or 4 fit tuples the number of parent chromosome was 

3. For one and two fit tuples the number o f parent chromosomes were one and two 

respectively. These numbers are also shown in Table 6.3. Choosing few input-maps 

as parent chromosomes instead of only one best chromosome allowed some diversity 

to be added in the system. [Eiben et a l,  1994] found that increasing number of parents 

improves performance, but only for a certain number of parents and after this 

performance decreases. The optimal number of parents depends on the size o f the 

search space [Eiben et a l,  1994],

Genetically-inspired operators like crossover and mutation are used to 

introduce new individuals into the population [Holland, 1975]. Section 2.5 explains 

different mutation and crossover techniques. Mutation keeps genetic diversity in the 

population [Back et a l,  1997]. Mutation implements a random change in the value of 

one or more genes for introducing new information into the system. For the 

experiments presented in this thesis while implementing crossover genes to offspring 

was copied from parent’s chromosomes. One of the g-th (g = where n is the

chromosome length used for the n-tuple network) genes o f the parents was selected 

randomly to be the g-th gene o f the child. This is known as uniform scanning 

crossover. [Eiben et a l ,  1995] introduced gene scanning as a reproduction 

mechanism that generalizes classical crossovers like uniform crossover and is 

applicable to an arbitrary number (two or more) of parents. Crossover probabilities 

for different number of parents are listed in Table 6.3. The process o f crossover and 

mutation is illustrated in Figure 6.6 where two parent chromosomes are shown. Each
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chromosome has 8 location-values or genes. An offspring was created by choosing 

genes from both parents with a crossover probability o f 0.50. Mutation was realised 

by replacing a gene of the new offspring with a randomly selected location-value 

from the input matrix. In the figure small black circles show mutated genes. Large 

mutation rates with elitist selection turned out to be remarkably superior to that of 

traditional GA to obtain the global optimum solution effectively [Shimodaira, 1996]. 

Mutation rates used by [Gracia, 2004] in three different topologies of n-tuple 

networks were 95%, 60% and 75%. A variable mutation rate would theoretically 

make use of a high rate to speed up evolution until a certain “fitness level” is 

achieved, and then reduce mutation in order to increase the average fitness and 

produce a more balanced population [Harvey, 1993]. Mutation rates used for GA are 

listed in Table 6.3. For one parent chromosome only mutation (asexual crossover) 

was used with very high mutation rate of 87.5%. Mutation rates were reduced from 

87.5% to 50% as more parent chromosomes were found. Reduction in values of 

mutation rates also enables to find the global optima by performing local search using 

good solutions obtained so far [Shimodaira, 1996],

6.7.2 Flow chart of GA on n-tuple system

Figure 6.7 and Figure 6.8 shows the GA based tuple selection algorithm in a flow 

chart. The algorithm starts by creating Q number of input maps randomly for a class 

Cj , where j  is the class index and Q is the population size. The Q maps are evaluated 

according to the fitness equation (5.1) and threshold equation (5.2). A number o f fit 

tuples, denoted by T f , will emerge from this evaluation. If T f is less than the 

required number o f class specific tuples for class C, , then GA operators comes into 

play. First T f  fit tuples o f the current generation are passed to the next generation 

without any change and rest o f the maps (Q-Tf) go through crossover and mutation 

operation. Before crossover parent chromosomes are chosen from the fit maps. After
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mutation all Q maps are evaluated again and previous steps are repeated or loop 

through until all optimised maps for all classes are being sought.

6.7.3 Comparing overall recognition rates of GA and PSO

An experiment was conducted to train an n-tuple network by GA and then use that 

trained network to recognize handwritten characters (0 to 9) from the NIST database. 

To compare the result with previously found results same experimental set-up was 

used as it was used in Section 6.7. Like before number of tuples in the network was 

150 and tuple size was 8. Recognition rates for characters 0 to 9 were found 

separately by the GA trained n-tuple classifier and then an average of these rates were 

calculated to find the overall recognition rate. The experiment was repeated for ten 

times and results were averaged to calculate an average overall recognition rate and it 

was found to be 84.17 and the best recognition rate in ten runs was 84.96. Results 

revealed that the GA based approach performed better than conventional random 

selection and the RnP based method, but it couldn’t outperform the PSO.

Table 6.4 Results of Student’s t-test between GA (A) and a second algorithm(F)

Algorithm F, 
Index from Table 6.1

texp-value p-value

1 11.43 1.00

2 2.02 0.97

3 -4.67 9.50e-005
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85.4

Figure 6.9 Boxplot of GA and PSO

Statistical significance of the results was analysed by a student’s t-test. GA 

was compared with the other algorithms and the results were tabulated in Table 6.4. 

The null hypothesis for the test was “average recognition rate by GA (X) is higher 

than any second algorithm (T) from Table 6.1”. The t-value against the conventional 

random selection approach was much higher than the tabulated t-value of 3.92 (for 18 

degrees of freedom) and it could be stated that the improved results of the GA over 

the random selection approach was “very highly significant”. GA didn’t perform 

well against the PSO. The t-value against the PSO is negative in the table, which 

means that the null hypothesis, X>Y, should be rejected and rather the alternative 

(Y>X) is true. Thus statistically the improved result of PSO over GA was “very
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highly significant”. The t-value against the RnP based approach is 2.02, which 

indicates that the mean of the GA is higher than the mean of the RnP at 90% 

confidence level. The p-values in the table indicate the probability o f observing the 

result by chance given that the null hypothesis is true. A very small p-value against 

PSO agreed that the fact that the null hypothesis against PSO is invalid.

Figure 6.10 Boxplot of several algorithms

Figure 6.9 displays the side-by-side box plots o f the GA and the PSO. Data 

samples of GA or PSO were obtained by running each algorithm for ten times. The 

notches in the figure are drawn about the median. Median of recognition rates for 

PSO was significantly higher (with 95% confidence) than the median for GA. Figure 

6.10 portrays location and variation changes between different data groups of all
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previously used algorithms to train n-tuple network. It can be noted that the 

recognition rates by conventional random approach were clustered at the bottom of 

the plot whereas data for PSO were clustered at the very top. GA was second in 

perfonnance and RnP was third.

Iterations (PS) or Generations (GA) 

Figure 6.11 Tuple maturity curve

6.7.4 Convergence properties between PSO and GA

It has been found in the experiments that both the Particle Swarm and Genetic 

Algorithm can improve the recognition power of the n-tuple network. The superiority 

of the PS over GA was statistically very highly significant. The target of the 

experiment was to find 150 optimal maps for the n-tuple network. It took some time 

to find these maps. In GA this time was measured by the number of generations and
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in PS it was measured by number of iterations. The more iterations or generations the 

system takes to find the 150 maps the more time is taken by the system to complete 

the search or converge. So the number o f iterations or generations required to find the 

optimum number o f maps measures the convergence time. Both GA and PS were 

executed for ten runs. Figure 6.11 compares the speed the convergence of GA and PS 

in finding 150 optimum maps. The curve in the figure is termed as the “tuple maturity 

curve”. The best perfomred GA and PS in ten runs were selected for this comparison. 

PS took 1009 iterations to converge while the GA took 1084 iterations. So the PS 

converged slightly faster than the GA.

Figure 6.12 Progressive recognition rates when optimised by GA
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Iterations

Figure 6.13 Progressive recognition rates when optimised by PS

0 200 400 600 800 1000 1200
Iterations (PS) or Generations (GA)

Figure 6.14 Progressive recognition rates by the best PS and GA
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Figure 6.12 and Figure 6.13 present the progressive recognition rates by both 

algorithms as the search progresses. Progressive recognition rates were calculated by 

using 150 tuples at any iteration. Before the convergence out of this 150 tuples some 

will be matured tuples (found at any iteration) and the rest will be randomly selected. 

An overall recognition rate found from the mix of 150 matured and randomly selected 

tuples constitutes a progressive recognition rate. In Figure 6.14 the best run search by 

both the algorithms is compared. A polynomial trend line is drawn along each curve 

to clearly show the difference in values between the PS and GA. From the results 

shown in Figure 6.12, Figure 6.13 and Figure 6.14, it is clear that the PS takes slightly 

less number o f iterations to converge and it achieves higher recognition rate 

compared to the GA.

6.7.5 Varying time constant for faster convergence

The value of time constant shown in equation ( 5.3) is crucial to compromise between 

the speed and performance of the search. Had a very small r been selected, the 

system would convergence too quickly and it would not be given enough time to 

search for better solution. The main target was to improve the performance to the 

highest possible level and to do so an empirical value of 100 was chosen for r  in all 

previous experiments, which provided enough time to run the search for exploring 

solutions. A high value of 100 for z resulted in a very slowly convergent system. A 

complete search of 150 maps took around four hours in a 2 GHz Pentium 4 machine. 

It was favourable to find a way to speed up the search process without loosing any 

noticeable difference in performance. For this a graphical plot was made with the 

number o f mature tuples against the iterations and this plot was named as the “tuple 

maturity curve”.

128



160

Figure 6.15 Tuple maturity curve for a PSO run

Figure 6.15 shows the tuple maturity curve in a typical complete search 

carried out with a fixed z  of 100. From the figure it can be noted that in many cases 

for a considerable number o f iterations the system couldn’t find any new map or 

tuple. The phase with no new map can be termed as unproductive phase (shown in 

Figure 6.15). One can argue that the phase was unproductive because o f the 

threshold was too high during that time, hence unsuitable. The system had to go 

through this unproductive phase for quite a while until the threshold was dropped 

down to a suitably low value, defined by equation ( 5.2), to allow a new map to be 

included in the system. To reduce this time waste by unproductive phases an 

alternative technique was sought. The method is described below. On the tuple 

maturity curve (Figure 6.15) a tangent drawn at any point can tell the system if any 

new tuple has been discovered in the current iteration. A tangent can be measured by
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finding the differences in number of matured tuples between the current iteration and 

the previous iteration. A zero tangent value will tell the system that the iteration that 

has been just finished was unproductive and the threshold equation should to be 

penalized for this. One way to penalize the threshold equation is to drop the value of 

r  by a percentage. A high percentage drop in the value of z might damage the 

performance o f the network. This is due to the stochastic nature of the search 

algorithm. The equation for penalizing an unproductive iteration was formed and it 

was as follows, where tu represents an unproductive interval:

f
z(tu + 1) = z(tu)x 1

V

T D '
100y

(6.3)

Table 6.5 Results for varying r

% drop of r 

from 100,

T D

Convergence 

time for 10 runs

(hours and mins)

Performance
(Avg.

recognition rate 

in 10 runs)

Relative 

performance, 
when compared 

with T D - 0

0 37 hrs 51 mins 84.89 0

5 9 hrs 34 mins 84.96 +0.07

20 3 hrs 49 mins 84.40 -0.49

50 1 hr 57 mins 84.11 -0.78

80 1 hr 10 mins 83.96 -0.93

To demonstrate the affect o f TD (percentage drop o f z ), an experiment was 

conducted by incorporating equation (6.3) in the search algorithm. The task of the 

experiment was to find optimum input maps by using the PS method. Table 6.5
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shows the outcomes o f the experiment. For 5% drop in the value o fr  , ten complete 

searches took 9 hours and 34 minutes which was almost 4 times quicker than the

TD=80 TD=50

Figure 6.16 Tuple maturity curves at different T D s

Figure 6.17 Variation of r for T D = 5 0
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previous PS search (index 3 in Table 6.1) where r  had always a fixed value of 100, 

in other words TD was zero. The performance o f the n-tuple network for 5% drop in 

the value of r  turned out to be better than that for a fixed r  of 100. For 20% drop, the 

perfonnance was reduced by 0.49 but the speed of the search was increased by more 

than 9 times when it was compared with a search for TD=0. So the general trend 

was: as the value of TD was increased, the speed of the convergence was substantially 

increased but the system performance was reduced to an extent. As long as the 

performance of the network does not get reduced to a noticeably low value, the drop 

in the value of r  can be acceptable for faster convergence.

Figure 6.18 Fitness threshold for T D = 5 0

Figure 6.16 plots the number of optimum maps found at any iteration for 

different values o f TD. From the figure it can be seen that the number of iterations 

required to find the 150 tuples is much less when the TD has a high value. Figure 6.17 

shows a run from the experiment where the value of r  was varied throughout the
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search with TD=50. As different input maps are sought for different class groups, in 

Figure 6.17 the value o f r  is initialised to 100 every time the search algorithm 

switches from once class group to the next class group and after that the r  is reduced 

according to (6.3) with TD=50. Figure 6.18 shows how the fitness threshold 

described in ( 5.2) varies throughout a search when TD in (6.3) is fixed to 50. Data 

for Figure 6.15, Figure 6.16 and Figure 6.17 were taken from the same experiment.

6.8 Summary
This chapter described in detail the implementation of the particle swarm based tuple 

selection technique. Suitable values of the parameters for the algorithm were 

explained. PS optimised n-tuple network was used to recognise handprinted 

characters from the NIST database. Statistical analysis o f the results showed that the 

improvement in recognition performance by the PS optimised network over the RnP 

based stochastic approach (described in Chapter 5) was very highly significant.

This chapter also provided a detailed comparison between the PSO and GA. 

From the procedure, it can be learnt that the PSO shares many common points with 

the GA. Both algorithms start with a group of a randomly generated population; both 

have fitness values to evaluate the population. Both update the population and search 

for the optimum. However, PSO does not have genetic operators like crossover and 

mutation. Particles update themselves with the internal velocity. They also have 

memory, which is important to the algorithm. There are control parameters involved 

in both GA and the PSO, and appropriate setting o f these parameters is a key point for 

success. Section 6.7.3 demonstrated that the PSO performed better than GA and the 

improvement was statistically very highly significant. Later in this chapter the 

convergence characteristics of both the algorithms were presented for selecting input 

maps of the n-tuple network. Both PSO and GA were conducted for ten runs. The 

best run and worst run curves for GA were wider apart in Figure 6 .12 compared to the
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distance between the curves in Figure 6.13. This demonstrates that the results of the 

PS were more consistent than the results of the GA. It was also found that dropping 

the value of r (6.3) during unproductive iterations can substantially increase the 

speed of the search. In the experiment a 5% drop in the value of r  from 100 was 

advantageous with slightly higher recognition rate in less number of iterations. 

Results reveal that it is not only the speed but the performance of the system has to be 

looked after also and to avoid a premature convergence with a low recognition rate 

the time constant has to be varied very carefully.
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Chapter 7

Hybridising Particle Swarm

7.1 Swarm Diversity
Although, in general, PSO results in good solutions, in high-dimensional spaces it 

might stumble on local minima [Kalyan et al., 2003], It may be argued that many of 

the particles are wasting computational effort in seeking to move in the same 

direction (towards the local optimum already discovered), whereas better results may 

be obtained if various particles explore other possible search directions. Repetition of 

the same positional value of a pixel in forming a particle can obstruct the exploration 

of new features in an image. Again two particles with same pixel-location values will 

overlap. If any two particles have the same pixel-location values in all dimensions 

then they will completely overlap with each other and carry same information to the 

n-tuple network. Different particles with the same information will not eventually 

benefit the system. Thus some sort of diversity in the PSO could be helpful to achieve 

better recognition rate. One way to add diversity in PSO is to use the Self-Organized 

Criticality [Bak, 1996]. Extending the PSO with SOC seems very promising reaching 

faster convergence and better solutions [Lovbjerg and Krink, 2002]. Another way of 

improving the PSO is by hybridising it with a technique that considers the 

neighbourhood interactions, which is naturally observed and expected in animal
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behaviour [Peram et al., 2003; Kalyan et al., 2003]. Hybridisation refers to combining 

different approaches to benefit from the advantages o f each approach. Section 7.3 

explains the algorithm described in [Peram et al., 2003] which considers the nearest 

neighbour interactions in PSO. Implementation of the SOC algorithm [Lovbjerg and 

Krink, 2002] will be introduced in the next section.

7.2 Self-Organized Criticality
[Lovbjerg and Krink, 2002] have explored extending the PSO with the SOC to 

improve population diversity. To understand the concept o f the SOC lets consider a 

pile of sand (Figure 7.1). At some point, as grains o f sand are slowly and steadily 

added, the pile becomes "critical" or unstable, and an avalanche (Figure 7.2) occurs 

spontaneously. In the sand-pile model grains are dropped on a lattice, they can pile up 

until a specified height is reached, after which they fall on the neighbouring sites. In 

this way avalanches propagate trough the system until they fall out o f the boundaries. 

Now, this visual and obviously simple system is, in fact, complex (there are truly 

many sand grains interacting), and, as the pile grows, it must attain the point of 

criticality, which initiates the dramatic reorganization caused by the avalanche. [Bak, 

1996] developed a simple mathematical model to simulate a growing sand pile, and it 

also produced avalanches.

Figure 7.1 Bak’s Sand pile [Bak, 1996]
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Figure 7.2 Avalanche in sand pile model [Dickman e t  a l., 2000)

The main idea in SOC is that most state transitions in a component of a 

complex system only affect its neighbourhood, but once in a while entire avalanches 

of propagating state transitions lead to a major reconfiguration of the system. Self- 

organized criticality has been found in a variety of phenomena such as earthquakes, 

volcanic activity, the game of life, landscape formation and stock markets. Chaotic 

systems can change dramatically without external influence and stable systems 

constantly change in very small steps. SOC describes how small amounts of external 

influence can occasionally lead to the big changes observed in complex systems. 

Evolutionary Algorithms and Particle Swarm Optimisation are models of complex
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systems. In EAs for instance it can be a difficult task deciding when to apply certain 

operators. Self-Organized Criticality has been successfully applied to improve the 

performance of Evolutionary Algorithms. This was done in relation to mass 

extinction and mutation operator control by [Krink et al., 2000; Krink and Thomsen, 

2001] where extinction zones were formed (3x3 rectangles). Mutated copies of 

currently best individual then substituted individuals in these extinction zones. 

[Rickers et al., 2000] used SOC in relation to spatial mating control, where most 

mates were immediate neighbours, but occasionally mates were selected from remote 

places. Occasional outbreeding improved the performance by counter balancing the 

effect of rigid neighbourhood inbreeding. Other aspects of SOC have been described 

and applied to search problems by [Boettcher and Paczuski, 1997],

The SOC-PSO algorithm used for the experiments in the research had a 

globally set “criticality limit”, denoted by CL, which is the maximum number of 

times a position on the search space can be considered or taken in forming a particle. 

If the criticality value o f a position on the search space exceeds this limit, the particle 

corresponding to that position responds by dispersing the criticality within its 

surrounding neighbourhood and then by relocating itself. Two types of relocation 

were investigated in [Lovbjerg and Krink, 2002]: the first re-initialises the particle, 

while the second pushes the particle with high criticality a little further in the search 

space. The second approach was followed in the SOC-PSO model used for this 

research. If the redistribution causes the criticality of the surrounding cell to be 

increased then process continues until criticalities of all the positions are below the 

maximum limit. The pseudo code of the SOC-PSO algorithm is given below:

begin
initialise
while(not terminate condition) do 

begin
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run PSO{
for i=l to the population size Q,

for d=l to the problem dimensionality n, 

Apply the velocity update equation (2.1); 

Limit velocity magnitude, Viid , (2.5) ; 

Update Position, X i ( d , (2.2) and (2.6); 

criticality [ X i ( d ] = criticality [ X i ; d ] +1; 

while (Criticality value at Xiid >CL)

{criticality [Xi/d] = criticality [Xiid]-1 ; 

Xiid =Disperse (Xiid) ;

criticality [X1#d] = criticality [Xi(d] +1; } 

End-for-d;

Compute Fitness;

If needed, update historical information 
regarding P±,d and Pgd i 

End-for-i;

End
End

Function Disperse (Xijd)

{Xnew= /{ Xiid, random (0 to 7)}; 

return Xnew;}
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From the pseudo code of SOC-PSO it can be seen that the SOC algorithm was 

implemented within the PSO loop. Once the velocity and a new positional value were 

found in PSO, the criticality value o f the new position was being checked. If the value 

is more than the criticality limit then the dispersion phenomena was realized and it 

was implemented by choosing a new location next to the previously found position. 

New position’s criticality value was checked again and if the value was found to be 

more than the criticality limit than again the dispersion will occur. Thus the 

dispersion continues until the system finds a location where the criticality value is 

less than the limit. The flow chart of the SOC is shown in the following figure.

Figure 7.3 Flow chart of Self-Organizing Criticality in PSO
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The positions on the search space can be considered as a grid as shown in 

Figure 7.4. X i(i in the figure represents a position which was found to have a critical 

value more than the limit. The dispersion was realized by a random jump from X}d to 

one of its surrounding positions. There are eight possible positions to jump around 

Xi ti numbered from 0 to 7. In dispersion one o f the values from 0 to 7 was chosen 

randomly and this value will define the new position. The arrow in the figure shows 

the direction of jump.

Figure 7.5 A 4 by 4 input matrix
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Criticality limit (CZ.) can control the diversity of the PSO. A particle will 

disperse when criticality of any of its dimension will be more than the limit. 

Criticality limit has to be carefully chosen. An increased criticality limit will allow 

more particles to be crowded in the same location, thus will make the system less 

diverse. With a small value of CL only fewer particles might bring the system to a 

critical point and results in more dispersion. Later an experiment will be carried out 

to count the number of times particles disperse in a search for different values of CL.

The total number of particles and its dimensionality also play important role 

in setting up a value of CL. To understand this lets consider a swarm system of 4 

particles with dimensionality 8 . Each particle sits on a 4 by 4 input matrix as shown 

in Figure 7.5. So there are 16 locations in the matrix. With the dimensionality o f 8 

each particle takes 8 places in that matrix. There are 4 particles, so the total places 

required by all particles are 32. Because there are only 16 positions available in the 

matrix so to accommodate 32 positions for all 4 particles each position needs to be 

repeated at least twice. So the criticality limit for this system has to be at least 2. If 

the limit is 1 then each position will be allowed to repeat only once, so there will be 

only 16 positions available and this will not be enough to accommodate 32 positions 

required by 4 particles. So a criticality limit 1 for this system will be invalid. The 

criticality limit has to be chosen carefully such that input matrix will have enough 

potential locations to accommodate all particles. Now if the input matrix is extended 

to an image area of 32 by 32 and number of particles to 200 with dimensionality 8 

then the lowest criticality limit will come out as 2. This is because each location in 32 

by 32 image area needs to be repeated at least twice to accommodate 200 particles. 

An equation can be formulated to find the lowest criticality limit. The smallest 

criticality limit, denoted by CLmin, can be found by the (7.1) where W and H  are the 

width and height of a binary image, Q is the population size and D  is the number of 

dimensions (Section 2.6.2) of particles in PSO.
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(7.1)

W x H

7.3 Nearest Neighbour Interactions in PSO
From natural observations and expectations of animal behaviour it can be stated that 

the others in its neighbourhood can influence the particle’s behaviour or solution. 

Thus conventional particle dynamics in PSO can be improved by using neighbour 

interactions for searching better solutions. To battle premature convergence in PSO 

neighbourhood interactions in PSO dynamics can be considered. A significant 

modification in particle dynamics is required to introduce the effects of multiple other 

particles in each particle. [Peram et a l,  2003] proposed a method where each particle 

is moved towards other nearby particles with a more successful search history, 

instead of just the best position discovered so far. This is in addition to the terms in 

the original PSO update equation, ( 6.1). The proposed algorithm is described as 

Fitness-Distance-Ratio [Peram et a i,  2003] based PSO (FDR-PSO) which selects 

only one other particle when updating each velocity dimension and which is chosen 

to satisfy two following criteria:

1. It must be near the particle being updated.

2. It should have visited a position of higher fitness.

In FDR-PSO each velocity dimension is updated by selecting a particle that 

maximizes the ratio o f the fitness difference to the one-dimensional distance. In other 

words, the d-th dimension of the z'-th particle’s velocity is updated using a particle 

called the P^,-, with prior best position Pb, chosen to maximize the following ratio:

FDR (b,i,d) =
Fitness(Pb) -  Fitness(Xi) 

I Pbd — Xi,d\ (7.2)
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where b i and |...| denotes the absolute value. A new term was introduced 

into the velocity update equation with a new coefficient ‘ <//3 ’ and a new stochastic 

weight factor ‘ran3’. Like in original PSO (Section 6.2) ‘r a n i’ can be uniformly 

distributed in {0,1} or can have a constant value of 1. Note that the FDR-PSO with 

\j/3=0 is the same as the usual PSO algorithm described by [Kennedy and Eberhart, 

1995]. The modified velocity equation for FDR-PSO is presented below:

Vi, d(t + 1) =  co x Vi,d(t) + i//lx ran 1 x (Pi,d -  Xi,d(t))

+ y/2x ran 2 x (Pgd -  Xi,d(t)) (7.3)
+  \j/ 3 x ran3 x (P/dr -  X,  d(t))

The pseudo-code for the FDR-PSO algorithm is given below:

begin

initialise

while(not terminate condition) do 

begin

run PSO{

for i=l to the population size Q,

for d=l to the problem dimensionality n, 

Apply the velocity update equation,

(7.3); In (7.3) Pya is the best 

position visited so far by Xi,&,Pgd is 

the best position visited so far by 

any particle and P fdr is chosen by
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Fitness(Pb) -  Fitness(Xi)maximizing ----- ,------- ,-----  , where
\Pbd-Xi,d\

Pb is Pfdr' s previously best found 

position

Limit magnitude, Vi,d;

Update Position, Xi,d;

End-for-d;

Compute Fitness;

If needed, update historical information 

regarding Pd/d and Pgd 1 

End-for-i;

End

End

From the above pseudo code it can be observed that the only difference 

between the PSO and FDR-PSO is the use of equation (7.3) where the influence of a 

third particle Pfdr is applied. As equation (7.3) is used for every dimensionality of a 

particle, so each dimension of a particle will have the influence o f a Pfdr. In the 

previous chapter it was explained that for an n-tuple classifier the dimensionality is 

equivalent to the tuple-size. If the tuple-size is 8 then the dimensionality of a tuple or 

a particle will be 8 . So for a particle with dimension 8 the number o f Pfdr will be 8 . 

The FDR-PSO algorithm was applied to optimise a set o f input maps. Tuple-size used 

in the experiment was 8 . Table 7.1 shows some of the results from an experiment 

where FDR-PSO was used to find better n-tuples.
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T able 7.1 E xam ples o f  th ird  particle, Pfdn for each d im ension  o f a particle P ,

Particle index, / Dimension, d Index of third 

particle, Pfdr

1 95

2 175

3 45

4 45

1 5 153

6 36

7 58

8 29

1 126

2 61

4 3 101

4 45

5 197

6 165

7 165

8 95
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Table 7.1 shows the results of only two particles (with index 1 and 4) to 

illustrate the fact that each particle had 8 dimensions and each dimension had a Pfdr. 

For example the velocity o f the 5th dimension of the particle with index 1 was 

influenced by a particle with index 153, velocity of the 2nd dimension of the particle 

with index 4 was influenced by a particle with index 61 and so on. Pfdr satisfies the 

equation (7.2) and this eventually influence the velocity o f the dimension defined by 

the equation (7.3). As FDR was an extension to the original PSO algorithm, so along 

with the Pfdr two other particles (global best and its own best) also influenced a 

particle’s velocity. According to [Kalyan et al., 2003], FDR-PSO decreases the 

possibility of premature convergence and thus is less likely to be trapped in local 

optima. In addition, FDR-PSO {y /\-y /2  =1, ^3=2,) outperformed PSO and several 

other variations of PSO in different tested benchmark problems [Kalyan et al., 2003],

7.4 Combining SOC and FDR with PSO
When the SOC algorithm is combined with the FDR and PSO a new level of 

hybridisation is achieved. FDR affects on the velocity o f a particle while SOC pushes 

a particle to relocate to its neighbourhood’s position due to its criticality value in the 

current position. A SOC-FDR-PSO algorithm is a hybrid technique where criticality 

values of positions are taken into account once the velocities and positions of 

particles are being updated by the FDR-PSO. Thus SOC-FDR-PSO can add more 

diversity in searching. The pseudo-code of SOC-FDR-PSO is given below. From the 

code it can be noted that for every dimension of a particle criticality of a position is 

checked and if the value is found to be more than the limit than the dispersion starts 

and it continues until a new position with a criticality value less than the limit is 

sought.
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begin
initialise

while(not terminate condition) do 

begin

run PSO{

for i = 1 to the population size Q,

for d=l to the problem dimensionality n, 

Apply velocity update equation (7.3) 

Limit magnitude, Vi;d;

Update Position, X i / d ;

criticality [Xi,d] = criticality [Xijd]+1 ; 

while (Criticality value at Xi;d >CL)

{criticality [Xi;d] = criticality [Xi(d] -1 ; 

Xi/d=Disperse (Xi(d) ;

criticality [Xi(d] = criticality [Xijd] +1 ; } 

End-for-d;

Compute Fitness;

If needed, update historical information 

regarding Pi,d and Pgd !

End-for-i ;
End

End
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7.5 Experimental Results

Experiments were conducted with several variations o f PSO, FDR-PSO, SOC-PSO 

and SOC-FDR-PSO obtained by changing different parameter values like particle 

velocity, inertia constant ( co), criticality limit (CL), swarm size (Q), stochastic weight 

factor etc. The network was built out of 150 tuples with tuple-size 8 . So total tuples 

available to be optimised was 150 and this was denoted as R in Section 6.2. Because 

the tuple-size was 8 , so the dimensionality of the hybrid PSO algorithm was 8 . The 

task was to use hybrid PSO algorithms to selectively choose tuples that describes the 

classes better and later use these tuples to recognise a test data set. The NIST (Section 

4.2.1) database consists of handwritten digits (0,1...9) was used in the experiments. 

Like the experiments described in last two chapters each character was a binary 

image with the dimension 32 by 32. All digits were scaled into same dimension and 

centred. Like experiments described in the last two chapters the available tuples were 

distributed among classes according to the difficulty associated in recognizing the 

patterns. It was reported in Section 5.5 that character 1 was most difficult class to 

recognize, so it gets most number of tuples to describe the class. The same numbers 

o f class specific tuples presented in Table 5.2 were used for the experiments with 

hybrid PSO. To compare results, the n-tuple network was trained with various 

methods as listed in Table 7.2. The overall recognition rates, the average o f all 

recognition rates of all classes, were found in the experiments. The recognition rates 

found by different approaches were mean o f ten runs. The best recognition rate by 

any algorithm in ten runs was also recorded. The average recognition rates by 

different methods are also compared in a scattered column chart as shown in Figure 

7.6. Numbers on the A-axis of the chart correspond to the indexes o f Table 7.2.
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Algorithms

Figure 7.6 Different approaches from Table 7.2

Moving from the left to right of the .Y-axis of the chart gives better recognition 

rates. Thus the algorithm corresponding to the rightmost column gives the best 

recognition rate. The left most column in the chart corresponds to the traditional 

approach o f n-tuple training, which is basically random selection process of input 

maps. The second approach (“RnP” based in Chapter 5) shown in the table is a pure 

hill climbing type method where the input maps are created randomly, so the 

candidate solutions neither compete nor co-operate. SOC-PSO [Lovbjerg and Krink, 

2002] and FDR-PSO [Peram et al., 2003] are hybrid PSO methods [Azhar and 

Dimond, 2004c] with added diversity. Results corresponding to the pure particle 

swarm based training are listed in indexes 3 and 4 of Table 7.2. Experimental 

outcomes clearly reveal that hybrid PSO algorithms with proper parameter settings 

can outperform other approaches. The best-performed algorithm, which is presented 

by the rightmost column on Figure 7.6, was a version o f a SOC-FDR-PSO (index 22
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in Table 7.2). In that algorithm ^/2 was set to zero and it means one of the main 

components (social parameter) o f the old PSO algorithm was completely deleted.

Table 7.2 Recognition rates of the n-tuple network by different optimisation

In d ex

T r a in in g  a lg o r ith m  fo r  n -tu p le  n e tw o r k  

T o ta l a v a ila b le  tu p le s , R = 1 5 0  a n d  T u p le -s iz e , n = 8  

P o p u la t io n  s iz e  fo r  P S O  o r  G A , Q = 2 0 0

A v e r a g e

R e c o g n it io n

R a te

(% )

B e st

R e c o g n it io n  

R a te  in  10 ru n s

(% )
1 Conventional random selection approach 

[Bledsoe and Browning, 1959]

80.93 82.83

2 RnP based stochastic approach introduced 

[Azhar and Dimond, 2004a]

83.67 84.50

3 PSO (^1=1, i/c2=l,Vmax=2, co =0.7, 

S,och={ 0,1})

84.82 85.35

4 P S O (y /l= l, y/2=1, Vmax =40, co =0.7, 

^ = { 0 ,1})

82.78 83.76

5 SO C -PSO (^l= l,v /2 = l, Vmax=2, co =0.7, 

CL=2,OL=\,Stoch={0,\})

85.05 85.71

6 SOC-PSO( y/\=2,y/2=2, Vmax 

=2, co=0.1 ,CL=2,OL=\, Stoch ={0,1})

85.03 85.45

7 SOC-PSO( y/\ =1, y/2 =1, Vmax

=2, co=0.1 ,CL=\0,OL=\, Stoch = {0,1})

84.76 85.07

8 SOC-PSO( y/l =1 ,^ 2 = 1 , Vmax =40, co =0.7, 

CL=40,OL=4, Sloch ={0,1})

82.78 83.24

9 SOC-PSO(^//l =\,y/2 =l,Vmax =\0, co =0.7, 

CL=2,OL=\, Stoch ={0,1})

84.30 84.80
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In d e x T r a in in g  a lg o r ith m  fo r  n -tu p le  n e tw o r k  

T o ta l a v a ila b le  tu p le s , R = 1 5 0  a n d  T u p le -s iz e , n = 8  

P o p u la t io n  s iz e  fo r  P S O  o r  G A , Q = 2 0 0

A v e r a g e

R e c o g n it io n

R a te

(%)

B e st

R e c o g n it io n  

R a te  in  10  ru n s

(%)

10 S O C -P S O (y / \ = \ , y / 2 = \ ,V max - 2 , CO =0.7, 

C L = 2 ,O L = 4 , Stoch “ {0,1})

84.94 85.32

11 FD R -PSO  ( y / l= l ,  y /2 = 1 , y /3 = 2 , Vmax =2, 

co = 0 .7 , Stoch -{ 0 ,1 } )

84.90 85.49

12 FD R -PSO  (y/1 =2, y/2  =2, y /3=2, Vmax =2, 

ft» =0.7, ^ = { 0 , 1 } )

84.89 85.42

13 FD R -PSO  (y z l= l, y /2 = 0 , y /3 = \ ,  Vmax=2, 

co =0.7, Stoch =  {0,1})

84.89 85.34

14 FD R -PSO  (^ 1 = 1 , y /2 = 0 , y /3 = 2 , Vmax =2, 

CO = 0.7 , Stoch ={0,1})

84.95 85.45

15 FD R -PSO  (^ 1 = 1 , y/2  =1, ^ 3 = 1 , Vmax=2, 

co = 0 .9 , S ,0Ch = \ )

84.47 84.73

16 FD R -PSO  (^ 1 = 1 , ^ 2 = 1 ,  y /3 = 2 , Vmax=2, 

co = 0 .9 , S toch = \ )

84.12 84.68

17 FD R -PSO  ( y/1 =0, ^ 2 = 1 ,  y /3=2, Vmax=2, 

CO = 0.9 , S Wch =1)

84.08 84.68

18 FD R -PSO  (^ 1 = 0 , y /2 = 0 , y /3 = 2 , Vmax=2, 

co=  0.9, 5 ^ /, =1)

84.78 85.49

19 FD R -PSO  (^ 1 = 1 , y/2  =1, ^ 3 = 1 , Fma* =2, 

co = 0 .7 , Stoch =1)

84.30 84.78

20 FD R -PSO  (^ 1 = 1 , y /2 = 0 , y /3 = 2 , Vmax =2, 

co= 0 .7 , S toCh = 1)

84.98 85.32
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In d e x

T r a in in g  a lg o r ith m  fo r  n -tu p le  n e tw o r k  

T o ta l a v a ila b le  tu p le s , R = T 50  a n d  T u p le -s iz e , n = 8  

P o p u la t io n  s iz e  fo r  P S O  o r  G A , Q = 2 0 0

A v e r a g e

R e c o g n it io n

R a te

(%)

B e st

R e c o g n it io n  

R a te  in  10  ru n s

(%)
21 FDR-PSO (y/l=2, y/2=2, i//3=0, Vmax=2, 

co =0.7, Stoch =1)

84.54 85.48

22 SOC-FDR-PSO( \f/1 =1, ^2  =0, ̂ 3=1, Vmax 

=2,co=0.1, CL=2, OL=\, Sloch ={0,1})

85.09 85.62

23 SOC-FDR-PSO( y/1 =1, y/2 =0, i//3 =2, Vmax 

=2, co =0.1, CL=2, OL=1, Stoch ={0,1})

85.01 85.48

24 SOC-FDR-PSO( y/\ =1, y/2 =1, y/3 =2, Vmax 

=2,co =0.1, CL=2, OL= 1, Stoch ={0,1})

85.03 85.75

25 SO C -FD R -PSO (^l= l,^2 =1,^3 =2,Vmax 

=40,m =0.7, CL=40, OL=4, Stoch ={0,1})

83.08 83.97

26 Genetic algorithm based approach 84.17 84.96

It can be observed from the results that the random variable within the range 

{0,1} for the stochastic weight factor, in equation (6.1) and (7.3), is more favourable 

than a constant value o f 1. "Stoch denotes the stochastic factor in the table. Swarm 

velocity also plays important role in the experiments. The Vmax o f 2 was observed to 

be a good value to fine-tune the entire search space with 200 particles and this agreed 

with the result presented in the previous chapter (Table 6.1). Setting the value of Vmax 

to 40 returned poor recognition rates as shown in indexes 4, 8 and 25 of Table 7.2. 

Several variations o f the SOC-PSO and SOC-FDR-PSO were conducted with 

different values of the criticality limit CL. A criticality limit of 2 exhibited high 

diversity and better performance than a value o f 40 or 10. In the experiments in
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addition to SOC more diversity was added to the system by prohibiting any 

duplication of a pixel location in forming a particle.

Table 7.3 Student's t-test between SOC-FDR-PSO (X ), index 22 in Table 7.2, and a
second algorithm (T)

Index from 

Table 7.2
Competing Algorithm (T) t-value p-value

1 Conventional random selection approach 15.26 1.00

2 RnP based stochastic approach 5.92 1.00

3 PSO (y/\= \, y/2 =l,Vmax=2, co =0.7, 

S/oc*={0,l})

2.18 0.97

5 S O C -P S O (^ l= l,^ 2 = l, Vmax=2, co =0.7, 

CL=2,OL=\,Stoch={0,\})

0.32 0.62

26 Genetic algorithm based approach 5.79 1.00

Further diversity was added by reducing the overlapping level, denoted by 

‘O V  in Table 7.2, between any two particles. In the table OL= 1 means that only one 

dimensional value of a particle is allowed to match with any one dimensional value o f 

any other particle. PSO based approach was also compared with Genetic algorithm 

based training (index 26 in Table 7.2) and it was found that both GA and PSO based 

approaches improved recognition rates o f the classifier from the conventional 

counterpart. But PSO showed superior results compared to GA.
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The experimental results of the hybrid PSO algorithm were assessed 

statistically by using the student’s t-test (Section 4.4.1). The best-performed 

algorithm (SOC-FDR-PSO) was compared with a second algorithm from Table 7.2 

and results were tabulated in Table 7.3. The null hypothesis for the test was “average 

recognition rate by the SOC-FDR-PSO (X) is higher than any second algorithm (T)”. 

For 10 trials of each algorithm the degrees of freedom was 18. Tabulated t-values for 

the confidence level 95%, 99% and 99.9% and 18 degrees of freedom were 2.10, 

2.88, and 3.92. The t-values were calculated from the experimental results and these 

are presented in Table 7.3. Results show that the increases in recognition rates by 

SOC-FDR-PSO (index 22 in Table 7.3) over conventional random selection (index 

1), RnP based stochastic approach (index 2) and the GA based method (index 26) are 

statistically “very highly significant” because the observed t-values for all of these 

cases were greater than 3.92. A very low t-value of 0.32 between the SOC-FDR-PSO 

and SOC-PSO (index 5) demonstrates that statistically there was no noticeable 

difference between the recognition rates by these two algorithms. The t-value 

between the SOC-FDR-PSO and PSO (index 3) is greater than 2.10 and it implies that 

due the added diversity the SOC-FDR-PSO performs better than the original PSO and 

the superior results of the hybrid method were “significant” at 95% confidence level. 

The p-value in Table 7.3 indicates the probability of observing the result by chance 

given that the null hypothesis is true. Small values of probabilities cast doubt on the 

validity of the null hypothesis.

Figure 7.7 displays the side-by-side box plots of the results found in the 

experiments. Each method in Table 7.2 was run for 10 times and then the average was 

taken. Recognition rates for all ten runs of an algorithm when grouped together 

visually, it creates a box as shown in Figure 7.7. Thus each box in the figure was 

constructed with the recognition rates of ten trials. The box plot conveys location and 

variation information in data sets, particularly for detecting and illustrating location
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and variation changes between different data groups o f algorithms. The notches in the 

Figure 7.7 are drawn about the median so that notches that don’t overlap represent 

significant differences between medians (with 95% confidence). The median of 

recognition rates for SOC-FDR-PSO was above 85%, for PSO was just below 85%, 

for RnP was just below 84%, for GA was just above 84% and for randomly selected 

approach was near 81%. Clearly the SOC-FDR-PSO exhibited a significantly higher 

median than any other algorithm. Box plots also show if there are unusual 

observations (outliers) in the dataset. Outliers are individually identified with a plus 

symbol in Figure 7.7. Two unusual observations were plotted: one for the random 

selection and the other one for the PSO.

Algorithms

F igure 7.7 B ox p lot o f  several algorithm s
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T able 7.4 D ispersion  for d ifferent C ritica lity  set-up

Criticality limit, C L Dispersion count (Avg. of 30 cycles)

1 oo

2 748

3 111

4 28

5 8

6 2

7 1

>8 0

F igu re 7.8 D ispersion  o f  particles d ecreases w ith  criticality
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Figure 7.9 Co-ordinates of X,-id (Table 7.5) before and after dispersion

Table 7.4 shows dispersion count or number o f times particles dispersed for 

different values o f criticality limit. Dispersion count in the table was calculated by 

finding the average numbers of dispersion in 30 cycles or iterations. Results show 

that when the criticality limit, CL, was equal to or greater than 8 there was no 

dispersion by any particle. This is because there was no situation where a particle’s 

criticality could cross the limit. Dispersion count was found to be high for a small 

value of a criticality limit. It showed highest value for a criticality limit o f 2 and then 

the value was gradually dropped to 1 when the criticality limit was 7. Relationship 

between the CL and dispersions count is presented in Figure 7.8. It was found (Table 

7.2) that a small value in CL (2) was favourable for higher recognition rates. It was
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due to the fact that more dispersion adds diversity in the system, in the other words 

helps exploring solutions to new locations. But this benefit was achieved by the 

system with the expense of spending more time in searching due to dispersion.

0 10 20 

x-axis of input matrix
■ Before 
•  After

30

Figure 7.10 Dispersion in a typical SOC-PSO cycle for C L =4

From Table 7.4 it can be noted that when CL was 1, particles dispersed for 

infinite times or forever. An infinite loop made the system non-convergent and hence
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was not acceptable. To avoid a situation where the system might fall into an infinite 

loop, equation (7.1) was formulated. If equation (7.1) is applied to the system the 

minimum value o f CL can be calculated. In the experiment there were 200 particles 

(Q), each with a dimensionality 8 (n). Area of each image was 32 (W) by 32 (H ). 

Once these values are put in equation (7.1), CLmin has come out to be 2. Thus once the 

equation (7.1) is applied 1 would be automatically rejected as a valid value for CL 

and this would clearly prevent the system to fall into an infinite loop.

-•it-".......................  ^  ^  m

m A s * ¥ « i l l
1  ♦ ♦  ^  ^  ♦ ♦  *

W  ♦  » T ^

10 15 20

x-axis of input matrix
25 30

♦  Before 
■ After

F igure 7.11 D ispersion  in a typ ica l SO C -P SO  cycle for C L = 2
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T able 7.5 D ispersion  in a typ ica l SO C -P SO  cycle for C L = 5

Particle position, X iid Direction of dispersion

107 0

536 2

373 0

107 3

847 7

289 6

579 0

373 3

956 3

761 7

289 6

Table 7.5 holds the data of dispersion of particles in a SOC extended PS 

optimised system. Results in the table were taken from a typical search cycle o f a 

SOC-PSO simulation in training n-tuple classifier for CL=5. The first column in the 

table shows positions of the particles where dispersion occurred and the second 

column shows the direction of dispersion or direction o f jump around X i(i as defined 

by Figure 7.4. Figure 7.9 shows the x-y co-ordinates o f X id from Table 7.5 in a 32 by 

32 image area. Small squares and circles in the figure depict the positions of the 

particles before and after dispersion respectively. As dispersion is realized in the 

nearest neighbourhood area, so a circle in the close proximity of a square would most 

likely represent the position after dispersion. Position “A ” in Figure 7.9 corresponds 

to a value o f 373 of X i(i in Table 7.5. It can be noted from the table that there are two
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occasions where the value of X u  was 373, but for both the cases the direction of jump 

were different and this fact is portrayed by the two circles next to the position A in 

Figure 7.9. A similar situation was observed next to the position B in the figure. 

Figure 7.10 and Figure 7.11 illustrate the dispersion phenomena for lower values of 

CL. Dispersion was most observed when the value of CL was 2. A low value of CL 

forces the system to reach to the criticality point too often and therefore causes more 

dispersion. Dispersion for CL=4 was not as high as for CL=2, but it was more than 

the dispersion for CL=5 presented in Figure 7.9 and this acknowledges the fact 

presented in Figure 7.8 and Table 7.4.

7.6 Summary
This chapter presented different variations o f hybrid PSO algorithms in training n- 

tuple network. Original PSO was extended by the hybridisation o f the PSO separately 

with the Self Organised Criticality and the FDR. The FDR algorithm was 

implemented by incorporating a third particle in the neighbourhood o f the current 

particle and it changes the velocity equation o f the original PSO. A novel 

hybridisation was described in this chapter by combining the SOC and FDR with the 

PSO to create an algorithm called SOC-FDR-PSO. Results revealed that the original 

PSO was refined and performed better after hybridisation. This chapter elaborately 

described different hybridisation techniques and how these approaches were applied 

to optimise n-tuple networks for recognising binary handwritten characters from the 

NIST database. A version of the SOC-FDR-PSO performed better than any other 

approach. The differences in recognition rates by different approaches were assessed 

by statistical tests. Results for hybrid PSO was found to be statistically significant 

when compared with the original PSO. It was important to note that the performance 

of any hybrid approach was very much dependent on different parameter values of 

the algorithm. Values of the criticality limit played important role in exploration of
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solutions for a SOC optimised network. A low value in CL was preferred to assist 

exploration for new solutions. But the value of CL shouldn’t be less than the CLmin 

(7.1), otherwise the training algorithm would fall into an infinite loop making it a non 

-convergent system. It was clear that the hybrid PSO added some diversity in the 

system and it helped to explore new locations to find better maps for the n-tuples.

163



Chapter 8 

Conclusion

8.1 Summary of the thesis
This thesis investigated the application of an efficient optimisation method known as 

Particle Swarm Optimiser to the field o f pattern recognition. Optimisation was 

realised for the connectivity pattern of the n-tuple network which was proposed by 

[Bledsoe and Browning, 1959] and described in Chapter 3 of this thesis. Motivation 

for optimisation was explained in this chapter too. Conventional n-tuple system has 

been implemented in hardware before by [Aleksander et a i,  1984; Azhar and 

Dimond, 2003], Optimised n-tuple networks presented in this thesis require less 

memory than a conventional network for a given performance demand. This is 

because an optimised network requires less number of tuples than a conventional 

network requires for a fixed performance level. So the optimised network will 

facilitate the hardware implementation o f the classifier due to its less memory 

requirements. The goal o f the optimisation was aimed at improving the recognition 

performance of the n-tuple network to classify binary handwritten digits from the 

NIST database. Important findings of this research are given below:
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A novel implementation of the reward and punishment (RnP) based objective 

function or fitness function was presented in Chapter 5. The equation (5.1) and 

parameters for the function were modelled which helped to measure the goodness of a 

solution by a stochastic search. Implementation o f the point scheme (5.4) was unique 

and was explained in Chapter 5. Understanding of the threshold function used to 

select solutions near the best-performed solution was depicted in this chapter. The 

exponential decay o f the threshold was controlled by careful consideration of the 

value o f the time constant in the threshold equation. The objective function described 

in Chapter 5 was used to evaluate performance o f solutions with all versions o f PSO 

and Genetic Algorithm described in Chapter 6 and Chapter 7.

A new search strategy was developed and was described in Chapter 5. The 

uniqueness o f the strategy was to search for different target number of tuples for 

different classes. The number was proportionate to the error rates. The search 

algorithm named as RnP based search spent more time in finding tuples for a difficult 

pattern class than an easily recognisable pattern. Experiments were conducted to find 

an optimum set o f n-tuples using the RnP based search to recognise handwritten 

characters from the NIST database. The controlling parameters for the experiments 

were listed in this chapter. The rationale behind choosing the specific database was 

given in Chapter 4. A brief overview of the experimental set-up was provided in this 

chapter. RnP based stochastic algorithm achieved 2.74% improved recognition rates 

over the random case proposed by [Bledsoe and Browning, 1959]. Results by the 

RnP method were statistically very significant as well. The statistical test and plot 

were explained in Chapter 4.

Chapter 6 reported the novel implementation of the particle swarm 

optimisation on the n-tuple network. Learning scheme by PSO was explained and the 

pseudo-code was given. Equations for PSO were included and the parameters 

controlling the performance of PSO were explained. Implementation o f GA has been
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explained in the same chapter to facilitate a comparison with PSO. Literature reviews 

for both PSO and GA were reported in Chapter 2. Both algorithms were applied to 

optimise connectivity pattern o f n-tuple networks. PSO trained network showed better 

results than the GA trained network. Both GA and PS optimisation performed better 

than the stochastic approach described in Chapter 5. Statistical analysis revealed that 

the higher value o f overall recognition rates by PSO over GA was very highly 

significant. Appropriate settings o f the control parameters in both PSO and GA were 

the key point for the success. Low particle velocity in PSO was favourable to explore 

more areas in search space and resulted better recognition rates. The progressive 

recognition rates o f PS and GA trained network were compared to investigate the 

convergence characteristics of the search. An equation to penalize the unproductive 

iterations was developed to speed up the search. It was found that dropping the value 

o f the time constant of the threshold equation (described in Chapter 5) during 

unproductive iterations substantially increased the speed of the search. Results 

revealed that it was not only the speed but the performance of the system had to be 

looked after also and to avoid a premature convergence with a low recognition rate 

the time constant had to be varied very carefully.

Chapter 7 presents the novel application of the hybrid particle swarm 

techniques in optimising the n-tuple network. Hybridisation was required due the risk 

o f premature convergence in PSO [Kalyan et al., 2003], To hybridise PSO with the 

Self-Organised Criticality approach the later algorithm was modelled and adopted for 

the n-tuple system. Hybridisation of PSO with another bio-inspired approach called 

the Fitness-to- Distance Ratio or FDR was realized in [Peram et al., 2003]. Chapter 7 

presents the application of this hybrid algorithm for the first time to optimise the n- 

tuple classifier. This chapter also describes the novel hybridisation o f the PSO with 

both the SOC and FDR and the resulting algorithm was named SOC-FDR-PSO. 

While using the SOC based hybrid approach explanation was given for choosing the
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right value of the criticality limit in experiments. Pseudo-code for all hybrid 

approaches was provided in this chapter. Experiments were performed to compare the 

performance of all hybrid approaches with varying parameters. A version of the SOC- 

FDR-PSO outperformed all algorithms in optimising n-tuples. Superior results of the 

SOC-FDR-PSO over PSO, GA and RnP based stochastic search were statistically 

significant. The dispersion phenomena in a SOC extended PSO approach was 

illustrated in experiments and more dispersion was found for lower values of 

criticality limit. It was found in the research that performance of any hybrid approach 

was very much dependent on the appropriate settings of the parameters in that 

algorithm.

8.2 Future research
The points described below will indicate the lines of research that can be pursued.

• This thesis has been presented the optimisation of the n-tuple network. 

Various bio-inspired approaches have been used to optimise the 

connectivity pattern of the n-tuple system. The same methodologies could 

be applied for other memory-based network as those networks are 

connected to the input image in a similar fashion. One example is the 

optimisation of connectivity pattern for the GCN [Howells et al., 1995] 

network by using Genetic Algorithm presented in [Farhan-Khola and 

Howells, 2003]. Particle swarm based optimisation could be equally applied 

to that network. So applications of all the proposed algorithms in this thesis 

for optimising connectivity patterns of other memory based networks could 

be a fruitful research in future.

• It has been shown that the performance of the n-tuple network depends on

the size of the n-tuple (Section 4.3). Hoque’s [Hoque, 2001] work

confirmed Ullmann’s [Ullmann, 1969] explanation about the relationship
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between the recognition performance and the value o f n. For all the 

experiments in this thesis tuple size had a fixed value o f 8 . But in future 

effects o f different tuple sizes could be investigated. For this, the 

optimisation method could be designed to seek a set of optimum tuples with 

different tuple-sizes. In this case PSO and its hybrid versions would search 

for not only the connectivity pattern but also the size (n) of the pattern for 

different tuples.

• In the experiments presented in this thesis the total available tuples were 

divided proportionately among classes according to the error rates. This was 

an initial working hypothesis, which needs further investigation in future. 

Also the calculated error rates were not normalised. So the effect of 

normalised error rates will be explored in future as well.

• The proposed optimisation methods were successfully applied for the off

line optical character recognition (OCR) task. The performances of the 

optimised network for non-OCR applications will be investigated in future.

• Experimental results suggested that the hybridisation of PSO with SOC and 

FDR algorithms was favourable and resulted in better recognition rates. 

This inspires in near future to investigate other hybrid techniques like the 

LifeCyle model described in [Lovbjerg, 2002], LifeCycle model combines 

Genetic Algorithms, Particle Swarm and Stochastic Hill-climbing and gives 

better solution over the individual algorithms themselves. The pseudo-code 

of the algorithm can be found in [Lovbjerg, 2002], where the individuals 

(for n-tuple it will be connection maps) start as PSO particles, then switch 

to GA individuals, then to hill-climbers, then back to PSO particles. The 

switching happens if an individual makes no fitness improvement.
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• Equation (6.3) was used to decrease the threshold value (5.2) of fitness 

allowing new maps to be selected yielding faster convergence. A zero 

tangent on the tuple maturity curve (Figure 6.15) indicated an unproductive 

interval. During search an opposite o f the zero tangent, an infinite tangent, 

could also exist. An infinite tangent would tell the system that a large 

number of tuples were generated without diversity leading to premature 

convergence. In this situation fitness threshold has to be increased so that 

the new tuples require a higher fitness to be accepted as successful. One 

way to increase the value of the threshold (5.2) would be to increase the 

value of t  in (5.3). A negative value of TD (percentage drop of z  ) in (6.3) 

could increase the value of z . A negative of TD would mean a percentage 

rise of z  instead o f a percentage drop. In future, experiments will be 

conducted to investigate if better results can be found by incorporating the 

increase of threshold for iterations when large numbers o f tuples are 

generated without diversity.

• Tuple search algorithm takes considerable amount of time to be executed. 

This is because in software the mappings for different classes can be 

searched only sequentially. Use of dedicated hardware engine would make 

the search much faster, because with hardware search for different classes 

could be run in parallel. So in future the optimisation algorithms will be 

realised in hardware. Due to the advantage of the re-configurable feature of 

an FPGA, it can be a good choice for hardware implementation [Azhar and 

Dimond, 2003],

• Different neighbourhood topologies could be realized in PSO as suggested 

by [Kennedy, 1999; Kennedy and Mendes, 2002], In a ring topology 

particles could be arranged in ring, with same number of particles to the 

right and left of a particle’s neighbourhood. In a Von Neumann topology
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particles are connected using a grid where each particle is connected to its 

four neighbour particles. Topologies have affect on propagation o f the best 

particle in the swarm. Slower propagation enables the particles to explore 

more areas in the search space and thus decreases the chance of premature 

convergence. Investigation o f effects of different topologies in swarm 

population for optimum selection o f n-tuples could be a good research in 

near future.
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Appendix B
Handwriting Sample Form in NIST

Following is an example HSF image file located in the CD-ROM distributed by 

NIST. All fields except the first line in such HSF forms were segmented by NIST.

C tT V  S T A T E  Z i f

/■We«, ¿f//y A ft f 'f f 'S 'Z
T b »  fcumpir of feixt&KtüHtg v . b*u?ig §S*t uM; & testing  fompote-r r^c^-giuNor* a f  fcwui jmiHed riu r i^ r

usd fetters Pfea** jiïsnt the fcifowißg itwwNWie** »& the be**** that n$pti*c fcw4i*r
0 1 3 3 4  ________  O I 3 3 t f t f t ? * 9 __  __  ft I ?  i H S $ 7 g 9_______

(S/p j v ' i ' i  ?i 9 Q/<? 3
ÏTSÎ

wo?s  ?

pie 1er print tbe foliowmg text in tbe bcx below
We, the Feopk ol tb* United State*, m order to form * more perfect Union, establish J net ire, instixe dorm>t 
TnutguiLt), provide for tbe soron*» Defeoae. prœnott the genera! Welfare, nod «erne* the of Ubcrcj 1
ourerjv*» end dot poeteirity, do nrdua nod eaiatdtth l i a  CONSTITUTION foe tbe United Sint«* of Amer«,t

iv-e, -tTno, p+cf/*r cy 1-**- l)ni f -c cf 3 7 V y-w'iT / J  ri. fa 
■formai m o  r-e  p  o p  f « e  + Q$nc>ri{ i s f «  h I f S h  ^ T u S + i C  er., 
} v t 5 o ^ ^  p l â m e - ^ - i i C  ” ] " r a  c i c f  a i  I I P  rci> <à « .  A - V t « * . .

e o m m o n  •+*•* a, <f r. « f u L  \PiltV*
a  n ' t  $<G.UY'-e. £  \ *  *>*5/ n°i $  o f  / * , j b P r " i y  ~ho o ^ r  ~

Sei o *** 5 CL'Sf* C-“ w ir p>£s 5 +■«¥*• v Ty t (X 5 i  i*a|a,i ¿x o<y 
ösT « . toiiSH A-ktJs 0 .o*jSTiTi>TiOTNd F ^ r Ai - t e  
O  A t V-e o| 5  Va e  0  £  f i f n e f i t ä r .  .

195


