
Optimisation of a Weightless Neural

Network Using Particle Swarms

A thesis

presented to the University o f Kent at Canterbury

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electronic Engineering

By

M.A. Hannan Bin Azhar

March 2008

FloZSöZ

To my wife Tasinina

11

I hereby declare that I am the sole author of this thesis.

I authorize the University of Kent to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize the University of Kent to reproduce this thesis by photocopying or

by other means, in total or in part, at the request o f other institutions or individuals for

the purpose of scholarly research.

(M.A. Hannan Bin Azhar)

iii

Abstract
Among numerous pattern recognition methods the neural network approach has been the

subject of much research due to its ability to learn from a given collection of representative

examples. This thesis is concerned with the design of weightless neural networks, which

decompose a given pattern into several sets of n points, termed n-tuples. Considerable

research has shown that by optimising the input connection mapping of such n-tuple

networks classification performance can be improved significantly. In this thesis the

application of a population-based stochastic optimisation technique, known as Particle

Swarm Optimisation (PSO), to the optimisation of the connectivity pattern of such “n-tuple”

classifiers is explored.

The research was aimed at improving the discriminating power of the classifier in

recognising handwritten characters by exploiting more efficient learning strategies. The

proposed "learning" scheme searches for ‘good’ input connections of the n-tuples in the

solution space and shrinks the search area step by step. It refines its search by attracting the

particles to positions with good solutions in an iterative manner. Every iteration the

performance or fitness of each input connection is evaluated, so a reward and punishment

based fitness function was modelled for the task. The original PSO was refined by combining

it with other bio-inspired approaches like Self-Organized Criticality and Nearest Neighbour

Interactions. The hybrid algorithms were adapted for the n-tuple system and the performance

was measured in selecting better connectivity patterns. The Genetic Algorithm (GA) has been

shown to be accomplishing the same goals as the PSO, so the performances and convergence

properties of the GA were compared against the PSO to optimise input connections.

Experiments were conducted to evaluate the proposed methods by applying the

trained classifiers to recognise handprinted digits from a widely used database. Results

revealed the superiority of the particle swarm optimised training for the n-tuples over other

algorithms including the GA. Low particle velocity in PSO was favourable for exploring

more areas in the solution space and resulted in better recognition rates. Use of hybridisation

was helpful and one of the versions of the hybrid PSO was found to be the best performing

algorithm in finding the optimum set of input maps for the n-tuple network.

IV

Acknowledgements

All praises are for the Almighty.

I would like to express my warm thanks to my supervisors Dr. Keith Dimond and Dr.

Farzin Deravi for their continuous guidance, encouragement and patience throughtout

this research and writing of this thesis. I enjoyed working with them and will never

forget their unfailing support and inspiration and the hours spent discussing various

ideas and methods.

I gratefully acknowledge the financial support from the Department o f Electronics,

University o f Kent, UK for this research work.

I would also like to thank all the members o f staff in the Department o f Electronics. I

am particularly grateful to Dr. Kostas Sirlantzis for sharing his knowledge.

I want to thank my friends for making my life more enjoyable. I would like to

mention just a few in particular: Sam, Sanaul and Mike.

Finally my thanks go to my family for their never ending love and care, especially to

my mother Halima, my father Azhar Ali and my wife Tasmina for their continuous

support during the difficult days of this research and writing.

V

Table of Contents
Abstract... iv

Acknowledgements...v

Table of Contents...vi

List of A cronym s..9

List of Symbols..11

List of Figures..14

List of Tables..16

Chapter 1 Introduction... 17

1.1 General Introduction and Motivation...17

1.2 Thesis Scope...20

1.3 Original Contribution.. 21

1.4 Thesis Outline..22

Chapter 2 Optimisation Algorithms... 26

2.1 Optimisation...26

2.2 Traditional Optimisation Algorithm.. 27

2.3 Stochastic Algorithms... 28

2.4 Evolutionary Computation.. 31

2.5 Genetic Algorithm... 33

2.5.1 Gene Representation... 33

2.5.2 Fitness function...34

2.5.3 Selection..34

2.5.4 Crossover...37

2.5.5 Mutation..38

2.5.6 Premature Convergence in GA... 39

2.6 Swarm Intelligence.. 40

2.6.1 Ant Systems.. 40
2.6.2 Particle Swarm Optimisation.. 41

2.6.3 Drawbacks of PSO... 45

2.6.4 PSO vs. GA.. 46

vi

2.7 Summary... 47

Chapter 3 The n-tuple Classifier...49

3.1 Introduction..49

3.2 Artificial Neural Network... 49

3.2.1 Learning in an ANN..51

3.2.2 Weightless Approach..52

3.3 An n-tuple Classifier..53

3.3.1 Architectural Parameters...58

3.4 Motivation for Optimisation.. 61

3.5 Summary..66

Chapter 4 Experimental Framework.. 67

4.1 Problem Definition.. 67

4.2 Database Selection.. 69

4.2.1 NIST Database... 69

4.3 Tuple size and R ...71

4.4 Significance Testing.. 73

4.4.1 Student’s T-test..74

4.5 Box Plot..79

4.6 Software used...80

4.7 Summary..80

Chapter 5 Reward and Punishment Based M ethod.. 81

5.1 Introduction..81

5.2 Class-Specific Tuples...81

5.3 Tuple Search Algorithm...82

5.3.1 Flow Chart of Tuple Search Algorithm.. 84

5.4 Reward and Punishment Based Performance Measure... 87

5.4.1 Point Scheme for RnP.. 90

5.5 Evaluation of RnP Optimisation.. 91

5.5.1 Students t-test results between RnP and basic n-tuple... 94

5.6 Summary..96

Chapter 6 Particle Swarm to Optimise n-tuples... 98

6.1 Introduction..98
vii

6.2 Particle Swarm on n-tuples..99

6.3 Fitness Measure in PSO..100

6.4 Learning Scheme by PSO..102

6.4.1 Flow Chart of the PSO based Tuple Search.. 105

6.5 Parameter Settings..108

6.5.1 Swarm size..109

6.5.2 Swarm Velocity...110

6.5.3 Inertia Weight..110

6.5.4 Cognitive and Social Parameter..I l l

6.6 Overall recognition rates by PSO... I l l

6.7 Comparing PSO with GA...115

6.7.1 GA Based Tuple Selection..116

6.7.2 Flow chart of GA on n-tuple system... 121

6.7.3 Comparing overall recognition rates of GA and PSO... 122

6.7.4 Convergence properties between PSO and GA... 125

6.7.5 Varying time constant for faster convergence.. 128

6.8 Summary.. 133

Chapter 7 Hybridising Particle Sw arm ..135

7.1 Swarm Diversity...135

7.2 Self-Organized Criticality..136

7.3 Nearest Neighbour Interactions in PSO..143

7.4 Combining SOC and FDR with PSO..147

7.5 Experimental Results..149

7.6 Summary..162

Chapter 8 Conclusion... 164

8.1 Summary of the thesis..164

8.2 Future research...167

Bibliography...171

Appendix A Publications arising from this work... 193

Appendix B Handwriting Sample Form in N IS T .. 195

viii

List of Acronyms
A N NArtificial Neural Network

A C Absolute Confidence

B C NBoolean Convergent Network

C l.............. Confidence Interval

CL............. Criticality Limit

C V Cross-validation

D B Database

E A Evolutionary Algorithm

E PEvolutionary Programming

E SEvolutionary Strategies

FD R.......... Fitness-to-Distance Ratio

G AGenetic Algorithm

G C N Generalised Convergent Network

GSN.......... Goal Seeking Neuron

H S F Handwriting Sample Form

MDB......... Majority Decision Block

NIST......... National Institute of Standards and Technology

N NNeural Network

O C R Optical Character Recognition

O LOverlapping Limit

9

PCN..........Probabilistic Convergent Network

P E Processing Elements

PL NProbabilistic Logic Node

P S Particle Swarm

P S OParticle Swarm Optimisation

RAM.........Random Access Memory

R C Relative Confidence

R nP........... Reward and Punishment

SA............. Simulated Annealing

SD............. Standard Deviation

SD3........... Special Database 3

SD7........... Special Database 7

SOC.......... Self-Organised Criticality

T S Tabu Search

W N NWeightless Neural Network

10

List of Symbols

i particle index

j class index

Cj............... j- th class

p ’j number of tuples matured for class Cj

T f number of tuples whose scores are higher than a predefined threshold

S total number o f vailable data samples

Si................ available data samples for training

St................available data samples for testing

Se............... available data samples for evaluation

Sqnumber o f C, samples correctly recognised

Sri.............. number of C) samples rejected

Smjnumber of Cj samples misclassified

Pc.............. positive points for correct classification

P,............... negative points for rejection

Pm..............negative points for misclassification

Oji..............performance score o f z'-the individual for class Cj

r time constant

TD percentage drop o f t

ddimension of the problem

Xj............... vector containing the current location in the solution space

11

Vi............... vector containing the velocity for each dimension o f X t

Vmax............maximum distance a particle can travel in an iteration

X max............sets bound for the search

Pi............... vector containing the location of particle’s own best in history

Pg...............location of the best particle in the neighbourhood

Pfiir.........a third particle that maximizes fitness to distance ratio

Pb.............. Pfdr’s best found position so far

Pbd............. location along dimension d of Pfdr ’s best found position

lbest..............location with highest value from a small group of particles

V ij.............velocity o f particle i along dimension d

Pi,d............. location along dimension d at which the particle had the best fitness

X/ d............. current position of particle i along dimension d

Pgd......... the current location along dimension d of the particle with best fitness

S,och............stochastic weight factor in the range {0,1}

y/1............. cognitive learning rate

y /2 social learning rate

y/3 learning rate for FDR component

ra n i........... stochastic weight factor for cognitive component

ran2...........stochastic weight factor for social component

ran3...........stochastic weight factor for FDR component

co.............. inertia weight

12

Cl min.... the lowest criticality limit

Q.......... population size

R total available tuples to be optimised

W width of the image

H height o f the image

L resolution of the image

*exp......... experimental t value

hh.......... theoretical t value

d f degrees o f freedom

1 connectivity pattern

H o null hypothesis

Ha alternative hypothesis

aprobability that the null hypothesis will be rejected

"a number o f measurements in dataset A

nB.......... ... number o f measurements in dataset B

* mean

t time steps

tu............ unproductive interval

in error

13

List of Figures
Figure 2.1 Hill-Climbing... 29

Figure 2.2 Local and Global maximum in solution space... 30

Figure 2.3 Pseudo-code of Genetic Algorithm.. 32

Figure 2.4 Fitness graph before ranking.. 36

Figure 2.5 Fitness graph after ranking... 36

Figure 2.6 Pseudo-code for PSO... 44

Figure 3.1 Layers in ANN..50

Figure 3.2 Feedforward network..50

Figure 3.3 Recurrent network.. 50

Figure 3.4 1 bit Ram Node.. 54

Figure 3.5 A Discriminator... 54

Figure 3.6 A discriminator illustrated by [Tambouratzis, 2000]... 55

Figure 3.7 An n-tuple network.. 57

Figure 3.8 Performance of n-tuple network as a function of training set size.......................... 59

Figure 3.9 Effect of input mapping shown in [Bishop et al., 1990].. 60

Figure 3.10 Classification histogram using NIST database, 140 tuples of tuple-size 8 .62

Figure 3.11 Image of character c similar to e .. 64

Figure 3.12 image of character e similar to c .. 64

Figure 4.1 Typical images from NIST training set.. 70

Figure 4.2 Typical images from NIST test set.. 71

Figure 4.3 Performance of n-tuple network as a function of n-tuple size................................ 72

Figure 4.4 Cases in t-test..74

Figure 4.5 Box plot...78

Figure 5.1 Pseudo-code of RnP based search... 83

Figure 5.2 Flow chart (Parti) of RnP based Tuple search algorithm...................................... 85

Figure 5.3 Flow chart (Part2) of RnP based Tuple search algorithm......................................86

Figure 5.4 Exponential decay of threshold function... 89

Figure 5.5 Class-wise comparison of recognition rates... 92

14

Figure 5.6 Box Plot of RnP and Random selection... 96

Figure 6.1 Influence of global best and particle’s own best...101

Figure 6.2 More particles above threshold as the time goes..101

Figure 6.3 Flow Chart (Parti) of the PSO based search algorithm...................................... 106

Figure 6.4 Flow Chart (Part2) of PSO based search algorithm... 107

Figure 6.5 Box Plots of PSO, RnP and Random selection...114

Figure 6.6 Crossover and mutation in Tuples..117

Figure 6.7 Flow Chart (Parti) of the GA based search algorithm.. 118

Figure 6.8 Flow Chart (Part2) of GA based search algorithm.. 119

Figure 6.9 Boxplot of GA and PSO...123

Figure 6.10 Boxplot of several algorithms...124

Figure 6.11 Tuple maturity curve...125

Figure 6.12 Progressive recognition rates when optimised by GA....................................... 126

Figure 6.13 Progressive recognition rates when optimised by P S .. 127

Figure 6.14 Progressive recognition rates by the best PS and GA.. 127

Figure 6.15 Tuple maturity curve for a PSO run..129

Figure 6.16 Tuple maturity curves at different TDs...131

Figure 6.17 Variation of r for TD=50..131

Figure 6.18 Fitness threshold for TD=50...132

Figure 7.1 Bak’s Sand pile [Bak, 1996]...136

Figure 7.2 Avalanche in sand pile model [Dickman et al., 2000]... 137

Figure 7.3 Flow chart of Self-Organizing Criticality in PSO...140

Figure 7.4 Dispersion by Random Jump..141

Figure 7.5 A 4 by 4 input matrix..141

Figure 7.6 Different approaches from Table 7.2..150

Figure 7.7 Box plot of several algorithms..156

Figure 7.8 Dispersion of particles decreases with criticality..157

Figure 7.9 Co-ordinates ofXi>d (Table 7.5) before and after dispersion................................ 158

Figure 7.10 Dispersion in a typical SOC-PSO cycle for CL=A... 159

Figure 7.11 Dispersion in a typical SOC-PSO cycle for CL=2 ... 160

15

List of Tables

Table 5.1 Distribution of Class-specific tuples among various classes.................................. 92

Table 5.2. Experimental Settings for RnP Optimisation.. 93

Table 5.3 Improved overall recognition rate by RnP based optimisation............................... 93

Table 6.1 Recognition rates of n-tuple networks with Optimised Tuples............................. 113

Table 6.2 Results of Student’s t-test between PSO (X) and a second algorithm(y).............. 113

Table 6.3 GA Operators...116

Table 6.4 Results of Student’s t-test between GA (X) and a second algorithm(y)................ 122

Table 6.5 Results for varying r ...130

Table 7.1 Examples of third particle, Pfdr, for each dimension of a particle P,-..................... 146

Table 7.2 Recognition rates of the n-tuple network by different optimisation...................... 151

Table 7.3 Student's t-test between SOC-FDR-PSO (X), index 22 in Table 7.2, and a second

algorithm (Y).. 154

Table 7.4 Dispersion for different Criticality set-up..157

Table 7.5 Dispersion in a typical SOC-PSO cycle for CL=5 ...161

16

Chapter 1

Introduction

1.1 General Introduction and Motivation
Pattern recognition as a field is extremely diversified and has been applied in many

areas such as science, engineering, business, medicine etc. The aim of pattern

recognition is to classify objects into identifiable categories or classes after extracting

features from the data. This data may be numerical, pictorial, textural, linguistic or

any combination o f these categories. Numerous techniques for pattern recognition

can be investigated in four general approaches of pattern recognition, as suggested in

[Jain et al. 2000]: template matching, statistical techniques, structural techniques and

neural networks (NNs). The template matching technique is based on matching the

stored prototypes against the pattern to be recognized. Statistical technique is based

on the assumption that there is an underlying and quantifiable statistical basis for

generation o f the patterns. In structural technique the underlying structure of the

pattern provides the information fundamental for recognition. The neural

classification emulates the computational paradigm of the behaviour of neurones and

their interconnections in human brain. Instead o f recognizing a pattern by following a

set of human-designed rules, as in the structural approaches, neural nets learn the

17

underlying rules from a given collection of representative examples. Among neural

network models, the weightless or n-tuple form of network [Bledsoe and Browning,

1959] stands out due to its own advantages over a variety of pattern recognition

algorithms [Rohwer and Morciniec, 1998]. Considerable research activity has focused

on the n-tuple method, both regarding theoretical issues [Rohwer and Morciniec,

1998; Jorgensen and Linneberg, 1999] as well as applications to real-world tasks

[Rohwer and Cressy, 1989]. Several applications of n-tuple-based networks to

handwritten character recognition tasks have been reported. Recognition of

handwritten characters by a computer has been a topic o f extensive research for many

years [Govindan and Shivaprasad, 1990; Mori et al., 1992; Nagy,1988], It plays

important role in many applications such as postal address interpretation, bank

checks, tax forms and census forms reading.

The n-tuple method decomposes a given pattern into several sets of n points,

termed n-tuples. The classifier stores class-specific information about the training set

in a number o f look-up tables .The entries in each look-up table are addressed by

sampling n specific data locations of the input that constitutes a ‘feature’ of the

pattern. A pattern is classified as belonging to the class for which it has the most

features in common with at least one training pattern of that class. The input

connection mapping of the n-tuple classifier determines the sampling and defines the

locations of the pattern matrix. There will be a vast number o f possible connections

for a matrix with the dimension like 32 by 32. The classification and generalization

performance are highly dependent on these input mappings [Bishop, 1990; Jorgensen

et al., 1995], A random map is suitable for an un-optimised problem as it samples the

point throughout the pattern matrix [Aleksander and Stonham, 1979], Considerable

research shows that by optimising the connections classification performance can be

improved significantly [Bishop, 1990; Jorgensen et al., 1995; Garcia, 2003].

Stochastic search algorithms like Particle Swarm [Kennedy and Eberhart, 1995] and

18

Genetic Algorithm [Holland, 1975] are used to find near-optimal solutions. This is

achieved by assuming that good solutions are close to each other in the search space.

This assumption is valid for most real world problems [Lovbjerg, 2002; Spall, 2003].

Particle swarm is a population based stochastic optimisation technique

developed by Eberhart and Kennedy in 1995, motivated from the simulation of social

behaviour of bird flocking or fish schooling. The particle swarm searches optima in

the solution space and shrinks the search area step by step. It refines its search by

attracting the particles to positions with good solutions. In a population based search

each individual’s performance is measured by a fitness function [Holland, 1975]. One

advantage of Particle Swarm Optimisation (PSO) is that it can deal with a large

number of problem parameters and no rigid assumption about the problem is

necessary. PSO provides intermediate results at any time during the computation. So

it can be stopped at any time depending on the precision wanted. Being successfully

applied in many areas like function optimisation, artificial neural network training

[Parsopoulos and Vrahatis, 2001b; Settles et al., 2002] or fuzzy system control

[Esmin et al., 2002], the PSO seems to be a good candidate to find an optimal set of

input maps for the n-tuple network.

Although, in general, PSO results good solutions, in high-dimensional spaces

it might stumble on local minima [Kalyan et al., 2003]. In order to be less susceptible

to premature convergence, the maintenance o f “diversity” in particle swarm is

important [Kalyan et al., 2003; Lovbjerg and Krink, 2002], One way to add diversity

in PSO is to use the Self-Organized Criticality (SOC) [Bak, 1996], Self-organized

criticality has been found in a variety of phenomena such as earthquakes, volcanic

activity, the game of life, landscape formation and stock markets. SOC describes how

small amounts o f external influence can occasionally lead to the big changes

observed in complex systems. Extending the PSO with SOC seems very promising

reaching faster convergence and better solutions [Lovbjerg and Krink, 2002] and the

19

resulting algorithm can be named as SOC-PSO. An alternative way o f improving the

PSO is by hybridising it with a technique which considers the neighbourhood

interactions that is naturally observed and expected in animal behaviour [Kalyan et

al., 2003]. A significant modification in particle dynamics is required to introduce the

effects o f multiple other particles in each particle. [Kalyan et al., 2003] proposed a

method where each particle is moved towards other nearby particles with a more

successful search history, instead of just the best position discovered so far. The

proposed algorithm is described as Fitness-Distance-Ratio (FDR) based PSO (FDR-

PSO) and it selects an influential particle, which satisfies the fact that it must be near

the particle being updated and it should have visited a position of higher fitness.

1.2 Thesis Scope
This thesis investigates the application o f an efficient optimisation method, known as

Particle Swarm Optimisation, to optimise the connectivity pattern of an n-tuple

classifier. The research will aim to improve the discriminating power of the classifier

in recognising patterns by exploiting more efficient learning. The "learning" scheme

will select ‘good’ input connections of the n-tuples in an iterative manner. At each

iteration the performance or fitness of each input connection will be evaluated, so a

fitness function will be formulated. Development of PSO on n-tuple systems will be

explained in detail. The original PSO can be refined by combining it with other bio

inspired approaches like Self-Organized Criticality and Nearest Neighbour

Interactions [Kalyan et al., 2003], The hybrid PSO algorithms will be applied to

optimise the n-tuple network. The performance of the hybrid system will be

investigated. The Genetic Algorithm has proven to be accomplishing the same goal as

the PSO [Kennedy and Spears, 1998], so the foundations, performances and

convergence properties o f the GA and PSO will be compared to select the optimum

set of n-tuples. Different parameter settings of all bio-inspired approaches will be

20

examined. The performance of the optimised network will be measured in

recognizing handwritten characters from the NIST [Wilkinson et al., 1992] database.

The character recognition research can be classified based upon two major criteria: 1)

the data acquisition process (on-line or off-line) and 2) the text type (machine-printed

or handwritten). The off-line handwritten character recognition has been selected as

the application domain of this research as it is relatively more complex compared to

on-line and machine-printed recognition [Anca and Yarman-Vural, 2001]. Due to

computational extensive nature of the simulations and also the stochastic nature of the

proposed algorithms, all presented results in this thesis will be taken over several test

runs. Statistical analysis like Student’s t-test will be performed to explore the

significance of the results.

1.3 Original Contribution
The main contributions of this thesis are:

• The adaptation of the Reward and Punishment (RnP) based performance

measure to the evaluation of connectivity patterns of the n-tuple network.

• The development of a new stochastic search strategy so that more time is

given to finding features for a difficult class than an easily recognisable class.

• The application o f the particle swarm intelligence in finding an optimum set

of input connections to an n-tuple classifier.

• The adaptation of the Self Organised Criticality algorithm for n-tuples and to

extend the original PS algorithm with the SOC in exploring better

connectivity patterns to n-tuples.

• The application of the hybrid PSO and Fitness-to-Distance-Ratio based

algorithm in finding better n-tuples.

21

• A novel hybridisation of the SOC, PSO and FDR algorithm to form the SOC-

FDR-PSO to optimise the n-tuple classifier.

• The evaluation of the efficiency of all proposed methods by applying the

trained classifier to recognise handprinted digits from the well-known and

widely used NIST database.

• and the comparison o f the performance of Particle Swarm optimised training

for the n-tuples with other algorithms including Genetic Algorithm based

training.

1.4 Thesis Outline

In addition to this introductory chapter the thesis consists of seven more chapters and

two appendices. Chapter 5 to Chapter 7 represents the core o f the thesis whereas

Chapter 2 to 4 describes the background knowledge, experimental framework and

literature reviews of related works. The organization o f the work is as follows:

Chapter 2 Optimisation Algorithms

This chapter briefly reviews the subject of optimisation. Traditional and

stochastic optimisation methods will be discussed first. This will be followed by the

discussion in Evolutionary Computation with more emphasis on Genetic Algorithms.

Different controlling parameters of GA will be discussed. The area o f swarm

intelligence will be described next. An elaborated discussion o f particle swarm

optimisation and its various modification will be presented. In order to provide a

complete coverage of swarm intelligence background, a brief overview of another

swarm intelligence model, Ant colony Systems, will be given.

Chapter 3 The n-tuple Classifier

This chapter discusses the field of artificial neural networks with the emphasis

on weightless approach. Learning in neural networks will be briefly introduced here.
22

This will be followed by the description of the memory based n-tuple network.

Network’s training and recognition techniques will be explained in detail. Different

parameters controlling the performance of the n-tuple network will be addressed next.

Finally the arguments behind optimising the connectivity pattern o f the n-tuple

network will be discussed.

Chapter 4 Experimental Framework

This chapter introduces the experimental infrastructure of the research. The

experimental procedures have been explained here. The database for the experiments

has been described. Rationale has been given for choosing the NIST database for

experiments. Reasons have been given for choosing the specific n-tuple size and

number of tuples in the experiments. The importance o f using significance testing for

the experiments has been explained and for this the Student’s t-test has been

introduced. The use o f Box Plot has been described to facilitate statistical

comparisons of results graphically. Finally this chapter mentions the list of software

tools and programming language used in the experiments.

Chapter 5 Reward and Punishment

This chapter describes a stochastic tuple selection algorithm. The

development of a measure of the ‘goodness’ o f a solution based on a Reward and

Punishment concept has been introduced in this chapter. The equations and different

parameters of the RnP measure have been explained. Experimental results on

optimising the learning o f the n-tuple network by using the RnP based stochastic

search have been presented in this chapter. The analysis o f the statistical significance

of the results has been also included.

Chapter 6 Particle Swarm to Optimise n-tuples

This chapter introduces the implementation of Particle Swarm Optimisation

on the n-tuple network. The learning algorithm by PSO has been elaborately

23

explained. The affects of different controlling parameters on the performance of the

PSO have been described. This is followed by the experimental results of

optimisation by PSO and a comparison has been given with conventional approach

and the RnP based approach. Later in the chapter the development o f a GA algorithm

has been described. This is followed by the analysis of experimental results

comparing the performances and convergence properties of the GA and PSO based

search in selecting a set of optimum n-tuples. Finally this chapter explains how the

speed of the search can be increased without noticing any significant loss in

performance.

Chapter 7 Hybridising Particle Swarm

This chapter first describes the importance of the diversity required in particle

swarm based optimisation. This is followed by the implementation of the Self

Organised Criticality algorithm on n-tuple networks. The hybrid SOC-PSO algorithm

and its parameters have been explained. Next a second bio-inspired algorithm named

Fitness-to-Distance-Ratio has been introduced in favour of adding diversity in PSO.

The combined FDR-PSO algorithm has been described. This is followed by the

hybridisation of PSO with both FDR and SOC algorithms and the resulting algorithm

has been presented as SOC-FDR-PSO. Finally experimental results have been given

comparing performances of n-tuple networks trained by various hybrid approaches.

The affects o f different parameters on the performance o f the network have been

investigated in this chapter.

Chapter 8 Conclusion

This chapter highlights the conclusions o f this thesis and discusses direction

for future research. A summary of what has been achieved in the thesis has been

presented here.

24

A list of publications derived from the work has been presented in Appendix

A. Appendix B shows an example image of Handwriting Sample Form (HSF) of the

NIST database. A subset of this database has been used in the experiments o f the

research.

25

Chapter 2

Optimisation Algorithms

2.1 Optimisation
Optimisation problems are very much a part o f pattern recognition and computer

vision [Shang and Wah, 1996], Optimisation algorithms seek values for a set of

parameters that maximize or minimize objective functions subject to certain

constraints [Rardin, 1998; Van den Bergh, 2002], Any maximization problem can be

converted into a minimization problem by taking the negative of the objective

function, and vice versa. Three main ingredients for optimisation problems are: an

objective function, a set of unknowns or variables and set of constraints that allow the

unknowns to take on certain values but exclude others. A feasible solution is found

when values for the set o f parameters satisfy all constraints. Feasible solutions with

objective function value(s) as good as the values of any other feasible solutions are

called optimal solutions [Rardin, 1998], An example of an optimisation problem is

the device sizing in electronic design, which is the task o f choosing the width and

length o f each device in an electronic circuit. Flere the variables represent the widths

and lengths o f the devices. The constraints represent a variety of engineering

requirements, such as limits on the device sizes imposed by the manufacturing

26

process, timing requirements that ensure that the circuit can operate reliably at a

specified speed, and a limit on the total area of the circuit. Optimisation techniques

are used on a daily base for industrial planning, resource allocation, scheduling,

decision making etc. Furthermore, optimisation techniques are widely used in many

fields such as business, industry, engineering and computer science. Through active

research in the field of optimisation new methods are regularly being developed

[Chinneck, 2006].

Global optimisation is the task of finding the absolutely best set o f parameters

to optimise an objective function. Depending on problems the best set can generate

either the highest (for maximization problem) or lowest (for minimization problem)

function value. In a local optimisation problem the highest or lowest function value

stays in a finite neighbourhood. There are many local optimisation algorithms in the

literature. For more detail the reader is referred to [Aarts and Lenstra, 2003] and

[Korte and Vygen, 2002], Global optimisation problems are typically quite difficult to

solve exactly and fall within the broader class of nonlinear programming (NLP)

[Gray et al., 1997], More details about global optimisation can be found in [Pardalos

et a l, 2002; Floudas and Pardalos, 1992; Florst et al., 2000], Remainder of this

chapter has been organised as follows: next section will discuss about the traditional

optimisation algorithms, Section 2.3 will introduce the stochastic approaches of

optimisation. This will be followed by population based evolutionary algorithms for

optimisations. Genetic algorithms and Particle Swarm Optimisation will be described

in great detail.

2.2 Traditional Optimisation Algorithm
Traditional optimisation algorithms use exact methods to find the best solution. Exact

methods involve more computational effort and usually require large amounts of

computer memory. One exact method is exhaustive (or brute force) searching, where

27

the algorithm produces the entire solution space for the problem so that the global

optimal solution is guaranteed to be found. A brute force algorithm is often the least

desirable choice because its cost is proportional to the number o f candidate solutions,

which, in many practical problems, tends to grow very quickly as the size of the

problem increases. Therefore, brute force search is typically used when the problem

size is limited and is not appropriate for the class of problems known as NP-hard

problems [Papadimitriou, 1994] that require an enormous (exponential) amount of

computing power or time to be solved exactly. A problem is said to be NP-hard if it

is solvable in polynomial time by a nondeterministic Turing machine [Turing, 1937],

The time to exhaustively search an NP-hard problem increases exponentially with

problem size.

Another exact method is Branch-and-Bound [Hendy and Penny, 1982], which

deals with optimisation problems over a search space that can be presented as the

leaves o f a search tree. It works when the search tree is monotonous - the score of

each node in the search tree is at least as bad as that of any of its ancestors. Branch-

and-Bound is guaranteed to find the optimal solution, but its complexity in the worst

case is as high as that of exhaustive search. Other exact methods include linear

programming and dynamic programming. More details about exact methods can be

found in [Michalewicz and Fogel, 2000].

2.3 Stochastic Algorithms
Real world problems are normally NP-hard problems where real optimality condition

is far too complex to be grasped by any particular method. In such cases it is desirable

to find near optimal solutions with the assumption that good solutions are close to

each other in the search space. This assumption is valid for most real world problems

[Lovberg, 2002; Spall, 2003], A stochastic algorithm is a method that proceeds by

taking a random walk in the search space with the objective of finding a near optimal

28

solution, thus stochastic algorithms may fail to find a global optimal solution. While

an exact algorithm generates a solution only after the run is completed, a stochastic

algorithm can be stopped any time during the run and generate the best solution found

so far [Lovberg 2002], The expected run time for stochastic algorithms is usually

shorter than for exact ones, but the worst case run time will often be the same or

longer. Stochastic search algorithms are easy to implement and suitable for many

combinatorial problems (problems with discrete variable parameters). They can

benefit from parallelism and can be used in a multiprocessor environment.

Figure 2.1 Hill-Climbing

Three major stochastic algorithms are Hill-Climbing [Michalewicz and Fogel,

2000], Simulated Annealing [Van Laarhoven and Aarts, 1987] and Tabu search

[Glover 1989; Glover 1990], Hill-Climbing exploits the analogy o f climbing hills

(Figure 2.1) to find the optimum. It always looks for the next change which will

improve the current state. In Hill-Climbing an initial candidate solution is generated

randomly, the current solution. The technique then investigates its immediate

29

neighbourhood to find a better solution. This process is repeated until no more

improvement can be made. Hill-Climbing techniques differ from each other in the

way they explore their neighbourhood and in the way they replace their candidate

solution. Binary encoded Hill-Climbers can be set to explore every neighbouring

point by flipping every bit one by one. Deterministic Hill-Climbing techniques, such

as steepest ascent Hill-Climbing as shown in Figure 2.2, are easy to use but can get

stuck in local optima. Because it can only go uphill, it cannot climb down a local

peak to find a higher one. In stochastic Hill-Climbing techniques a weaker

neighbouring solution can replace the candidate solution with a given probability,

which gives the ability to escape local optima [Michalewicz and Fogel, 2000],

Objective
Function

State space -------------- ►

Figure 2.2 Local and Global maximum in solution space

Simulated Annealing (SA) [Van Laarhoven and Aarts, 1987] is a general

purpose global optimisation technique for very large combinatorial problems. It is a

stochastic search algorithm, which exploits an analogy between the way a metal cools

and freezes into a minimal energy crystalline structure (the annealing process) and the

Global

30

search for an optimum solution in a search process. In SA the probability of

replacement of the current solution by a weaker solution depends on a temperature

value. If temperature decreases over time the probability of changing to a lower

energy state also goes down [Salman, 1999]. SA allows downhill movements (Figure

2.2) to be made and thus can escape from local optima and find the global optima.

Tabu search (TS) is a heuristic search algorithm [Glover, 1986], which makes

use of some memory of the states that has already been investigated. The algorithm

does not re-visit those states. Unlike hill climbing here inferior solutions are selected

if better solutions are in the memory, thus, TS avoids being trapped in a local

optimum. The moves that are not allowed to be re-visited are held in a list and these

moves are called ‘tabu’. The tabu list is used to avoid the search getting into a loop by

continually searching the same area without actually making any progress [Gabarro,

2000]. Tabu search starts with a randomly chosen current solution. A set o f test

solutions is generated via moves from the current solution. The best test solution is

set as the current solution if it is not in the tabu list, or if it is in the tabu list, but

satisfies an aspiration criterion [Salhi, 2002], A common aspiration criterion could be

to accept a move that results in better solution than the best solution so far. Another

aspiration criteria could be a move favouring more drastically different solutions.

Difference could be based on distance in search space or based on difference in the

value of objective function compared to the current best solution.

2.4 Evolutionary Computation
Evolutionary Computation (EC) is a robust and powerful stochastic search

mechanism inspired by biology [Back, 1992; 1994; Kim and Myung, 1997; Back et

al., 1996; 1997a; 1997b; Collins, 1998; Fogel, 1994; 1995; Spears et al. 1993], EC

differ from other optimisation methods, such as Hill-Climbing and Simulated

Annealing, in the fact that in EC a population of potential solutions to a problem is

31

maintained, and not just one solution [Engelbrecht, 2002; Salman, 1999], By

repeatedly applying the evolutionary operators to the current population at each

generation, a new population of individuals with better performance is created to

search the space o f potential solutions. The dominant methodologies of evolutionary

computing are evolutionary programming (EP) evolutionary strategies (ES) and

Genetic Algorithm (GA). GAs have been successfully applied in many areas such as

pattern recognition, image processing, machine learning, etc. [Goldberg, 1989], In

many cases GAs perform better than EP and ESs. However, EP and ESs usually

converge better than GAs for real valued function optimisation [Yao, 1997].

t = 0; /* Initial Generation V

populationinitialise(t);

evaluation(t);

repeat

t=t+l; /* Next Generation */

select_parents(t);

crossover(t);

mutate(t);

evaluate(t);

sur\nvors_selection(t);

until best individual meets criterion;

Figure 2.3 Pseudo-code of Genetic Algorithm

32

2.5 Genetic Algorithm
Genetic Algorithms are search algorithms utilising the mechanics of Darwinian

natural selection and genetics. GA performs well on many different types of problems

and they are less susceptible to getting stuck at local optima than a gradient search

methods. GAs introduced by John Holland [Holland, 1975] are adaptive search

strategies based on a highly abstract model of biological evolution to find a possible

solution in a given problem space. This space, referred to as the search space,

comprises all possible solutions to the problem at hand. Figure 2.3 outlines a typical

genetic algorithm. A population o f individual structures is initialised and then

evolved from generation t to generation t + / by repeated applications of fitness

evaluation, selection, recombination and mutation. Initial population of

individuals is generated at random or heuristically. Every evolutionary step

(generation), the individuals in the current population evaluated according to some

predefined quality criterion, referred to as the fitness, which is equated with

goodness of solution. Genetic algorithms are stochastic iterative processes that are

not guaranteed to converge; the termination condition may be specified as some

fixed, maximal number o f generations or as the attainment of an acceptable fitness

level. Gene representation, fitness or objective function and genetic operators are the

three most important aspects o f using GA.

2.5.1 Gene Representation

Individual structures in the population are encoded by chromosomes or genotypes,

which may be represented by strings o f bits (bit strings), where a single bit encodes a

gene. This is known as binary encoding. The different values a gene can take are

called alleles. The characteristics or features o f each feasible solution are called as

phenotype. Some of the non-binary representations o f genes include floating point

[Janikow and Michalewicz, 1991], integer [Bramlette, 1991], graycoded [Rana and

33

Whitley, 1998] and matrix [Michalewicz, 1996] type. For more detail about gene

representations please see [Goldberg, 1989], Uniform evolutionary operators can be

used with binary representation for any problem [Van den Bergh, 2002], but for non

binary genes need different evolutionary operators for each representation.

2.5.2 Fitness function

The object or fitness function defines how good each solution or individual is. One of

the key aspects for Genetic Algorithm’s success is the right choice of a fitness

function that accurately quantifies the quality o f candidate solutions. Alongside good

fitness, chromosome representation has to be correct to effectively solve a particular

problem. These two parameters are problem dependent. A wrong selection of these

two parameters will drastically affect the performance o f GAs. While optimising

combinatorial problems by GA a situation might exist in the search space where

fitness function do not map to feasible solutions. A solution to this problem could be

use of a penalty term with the original fitness function, which will result in

chromosomes with infeasible solutions and eventually they will disappear from the

population [Fletcher, 2000],

2.5.3 Selection

Selection is the competition among individuals of the population to become parents

o f the next generation. The fitter the member o f the population the more likely it is to

produce an offspring. In addition, the selection operator can be used to select elitist

individuals. Given the fitness of each population member GA can select good

members in the current population for the next population. A selection process is

usually biased toward fitter chromosomes and it pushes the search on apparently

more profitable regions in the search space [Angeline, 1998a], Examples of well-

known selection approaches are as follows:

34

• Roulette wheel selection: In this method the possibility o f picking an individual is

proportional to the individual's score or fitness. The fitter the chromosome, the

more chance that it may be chosen for mating. Consider a roulette wheel where

each chromosome in the population occupies a slot with slot size proportional to

the chromosome's fitness [Gray et a l, 1997]. When the wheel is randomly spun,

the chromosome corresponding to the slot where the wheel stopped is selected as

the first parent. This process is repeated to find the second parent. Clearly, since

fitter chromosomes have larger slots, they have better chance to be chosen in the

selection process [Goldberg, 1989].

• Rank selection: The previous selection will have problems when the fitness

differs very much. When one or few chromosomes have very high fitness on the

roulette wheel then the lower fit chromosomes will have very few chances to be

selected. This will increase selection pressure, which will cause

diversity to decrease rapidly resulting in premature convergence. This fact has

been illustrated for 5 chromosomes in Figure 2.4. Rank selection first ranks the

population and then every chromosome receives fitness from this ranking. As

shown in Figure 2.5 the worst will have fitness 1, second worst 2 etc. and the best

will have fitness 5 (number of chromosomes in population). After this all the

chromosomes have a chance to be selected. Rank selection still prefers the best

chromosomes; however, there is no domination as in the case o f roulette wheel

selection. But this method can lead to slower convergence, because the best

chromosomes do not differ so much from other ones [Gray et a l, 1997],

• Tournament selection: Tournament selection [Goldberg, 1989] runs a

"tournament" among a few individuals chosen at random from the population.

The best individual is copied into the intermediate population. This process is

repeated until the mating pool contains a sufficient number o f chromosomes to

start the mating process. Selection pressure can be easily adjusted by changing the

35

tournament size. If the tournament size is larger, weak individuals have a smaller

chance to be selected.

Elitism: In this approach, the best chromosome, or a user-specified number

of best chromosomes, is copied to the population in the next generation. The

remaining chromosomes are then chosen using any selection operator. Elitism can

very rapidly increase performance o f GA, because it prevents losing the best

found solution to date. [Gray et al., 1997],

□ chromosomel
Ü chromosome2
□ chromosome3
□ chromosome4
■ chromosomeö

Figure 2.4 Fitness graph before ranking

□ chromosomel
llchromosome2
□ chromosome3
□ chromosome4
■ chromosome5

Figure 2.5 Fitness graph after ranking

2.5.4 Crossover

Crossover is the main operator in GA, which assists exploration to new locations in

the search space [Salman, 1999], Crossover uses the current diversity in the

population to generate new solutions. Given two population members (or parents),

crossover combines or mates parts of the two parents (or chromosomes) to yield two

new chromosomes (offspring) with the hope that the new chromosome may be better

than both of the parents if it takes the best characteristics from each of the parents.

Crossover occurs during evolution according to a user-definable probability. The

three main crossover operators are described below. Several other forms of crossover

have been investigated in [Michalewicz, 1996; Booker et al., 1997; Krink and

Lovbjerg, 2002],

• Single point crossover: [Holland, 1975] provided one o f the earliest analyses of

“one-point” crossover. It can be implemented by randomly selecting a common

crossover point in both parents, and swapping the right end of both chromosomes

as illustrated in the following example:

Parent A: 01001010

Parent B: 11110011

Offspring A: 01001011

Offspring B: 11110010

• n-point crossover: [Jong, 1975] extended the above single point analysis to an “n-

point” technique. It applies the same strategy, but divides the original strings in n

cut-points and substrings are swapped among these points. For instance for a

two-point crossover system, two positions are randomly selected. The middle

parts of the two parents are then swapped to generate two new offspring. This is

illustrated in the following example:

37

Parent A: 01001010

Parent B: 11110011

Offspring A: 01110010

Offspring B: 11001011

• Uniform crossover: [Syswerda, 1989] introduced “uniform crossover” that does

not use cut-points but instead creates offspring by deciding, for each allele of one

parent, whether to swap that allele with the corresponding allele in the other

parent. Uniform crossover is more flexible to achieve any combination of genes.

In this approach, alleles are copied from either the first parent or the second

parent with some probability, usually set to 0.5. An example has been given

below.

Parent A: 01001010

Parent B: 11110011

Offspring A: 01101011

Offspring B: 11010010

2.5.5 Mutation

Mutation is the secondary operator to keep genetic diversity in the population [Back

et al., 1997a]. Mutation is applied to the offspring chromosomes after crossover is

performed. Mutation implements a random change in the value o f one or more genes

for introducing new information into the system. Thus mutation introduces a certain

amount o f randomness to the search. It helps the search find solutions that crossover

alone might not encounter. In a bit-string it can be realised by flipping a bit.

However, mutation functions as a background operator with a very low probability of

application. As it has been observed as an infrequent phenomenon in both nature and

38

GAs [L0vberg, 2002], Alternately a mutation operator could be set as the inverse of

the number of genes in a chromosome or chromosome size [Goldberg, 1989].

Mutation increases diversity and searches new areas of the state space. A destructive

mutation keeps the mutated population member whatever its fitness, whether good or

bad. On the other hand a constructive mutation only keeps the mutation if it is more

fit than before mutation, but this requires an extra call to the fitness function.

2.5.6 Premature Convergence in GA

Genetic algorithms may lead to premature convergence if the population of a GA

reaches such a sub optimal state that the genetic operators are no longer able to

produce offspring that are able to outperform their parents [Fogel, 1994; Affenzeller

and Wagner, 2004], The intuitive reason for premature convergence is that the

individuals in the gene pool are too ‘alike’. If a chromosome is far fitter than its rivals

early on, it can come to dominate a population, leading to loss of genes that may later

lead to better solutions and this prevents further exploration of search space [Dorigo

and Di Caro, 1999], Thus one or few dominating chromosomes near local optima can

attract individuals in a population before reaching the global optimum solution,

resulting in premature convergence. So Premature convergence can be avoided by

using some mechanisms like using subpopulation, employing high mutation rate,

through fitness scaling etc.

• Subpopulation'. When chromosomes are divided into subpopulations, each

subpopulation is evolved independent of the other subpopulations.

Subpopulations interact through exchange of a number of chromosomes. This

scheme ensures diversity in the population to prevent premature convergence.

• High Mutation rate: Increase in mutation rate aids in exploring new areas in

the search space and increases diversity too. As the modality of a search space

increases the likeliness o f a solution being trapped between ravines is more.
39

Crossover alone works as a local search operator in a multi-modal search

space. To escape from this trap a high mutation rate could be used, as

mutation re-initialises chromosomes to new locations. An overly high

mutation rate should be avoided as then GA starts to resemble a random walk

rather than a directed process.

• Fitness Scaling: Fitness scaling is a process that re-scales the fitness with

respect to the average of the population, so that the fittest chromosome is

only, say, twice as likely to be chosen for cross-breeding as the average

chromosome.

2.6 Swarm Intelligence
A secondary area of research emerged in the field of evolutionary computation is known

as the Swarm Intelligence where the searches are guided by social pressure rather than

evolutionary pressure used in EAs. But like EAs, swarms also consist of populations of

individuals representing candidate solutions to a problem. Swarm intelligence emulates

the searching techniques of insects where the communications between the members of a

swarm direct the search. Two significant algorithms have emerged in this field: Ant

Systems and the Particle Swarm Optimiser.

2.6.1 Ant Systems

Ant systems simulate the search techniques o f biological ants as they locate food and

return it to the colony, reinforcing their paths on the return trip so that other ants can

locate the same food source. The algorithm allows an initial population of ‘ants’ to

walk randomly through the solution space. While walking each ant labels its path

with a virtual pheromone marker proportional to the fitness o f the path. When one ant

finds a good path from the colony to the food source the other ants tend to follow that

path, but may test alternate paths with some level o f probability. If the alternative

40

path selected results in a stronger pheromone marker, there will be a greater

probability o f that path being selected by the next ant. The algorithm also allows the

evaporation of the pheromone trail over time, which helps to avoid the convergence

o f the solution to a local optimum. Without evaporation the exploration o f the

solution space would be constrained. Ant systems have been applied successfully to

path problems, network load balancing problems [Di Caro and Dorigo, 1998] and the

quadratic assignment problem [Maniezzo and Colomi, 1999],

2.6.2 Particle Swarm Optimisation

A particle swarm optimiser is a population-based stochastic optimisation algorithm

that emulates a flock [Kennedy and Eberhart, 1995; Kennedy and Eberhart 2001]

searching over the solution landscape by sampling points and converging the swarm

on the most promising regions. PSO is influenced by the simulation of social

behaviour rather than the survival of the fittest [Shi and Eberhart, 2001], Another

major difference is that, in PSO, each individual benefits from its history whereas no

such mechanism exists in GAs [Coello Coello and Lechuga, 2002], PSO is easy to

implement and has been successfully applied to solve a wide range of optimisation

problems such as continuous non-linear and discrete optimisation problems [Kennedy

and Eberhart, 1995; Kennedy and Eberhart, 2001; Eberhart and Shi, 1998a], In

particle swarm, a particle’s movement is influenced by its velocity, an attraction to its

previously found promising search area and an attraction towards the best area

discovered by its neighbours. Thus the social pressure on a particle applied by other

particles in the neighbour hood plays an important role behind the convergence in

particle swarm.

The basic structure of a particle is significantly more complex than that of a

member of a GA population. A particle is denoted by i. If there are Q particles in total

41

then it is said that swarm size is Q and i can vary from 1 to Q. Each particle consists

o f the following main components:

• Xi is a vector containing the current location in the solution space. The size of

the Xi is denoted by d, which is the dimension of the problem or the number of

variables used by the problem being solved. For example, for some function

/ (u, v, w), X u corresponds to the u value, X i 2 corresponds to the v value, and

X j corresponds to the w value.

• Fitness is the quality of the solution represented by the vector Xj. This is a

problem specific evaluation function and refers too how well a particle

performs. In a flock of birds this might be how close a bird is to a food source,

in an optimisation algorithm this refers to the proximity of the particle to an

optima.

• Vi is a vector containing the velocity for each dimension of X t. It defines the

step size o f movement along a dimension from the current position o f a

particle. It drives the direction a particle will move through the search space,

that is, causing the particle to make a turn.

• ‘pbest’ is the fitness value of the best solution yet encountered by a particular

particle, and P, is a copy of the Xt for the location that generated the particle’s

pbest. Jointly pbest and P, comprise the particle’s memory and influence

particle’s movement to pull the particle towards a promising search region.

• Pg is an important parameter in particle swarm. Pg is the location of the

particle that currently produces the best score in the neighbourhood. When the

swarm is divided in small groups of particles then the neighbourhoods overlap

and every particle is in multiple neighbourhoods. On the other hand when

entire swarm is considered as single neighbourhood, Pg defines the location of

the global best particle.

42

The update equations for velocity and the position of each dimension of a

particle are shown in (2 .1) and (2 .2) respectively, given a problem of ̂ -dimensions,

for each particle i and each dimension d, d = [1..D].

Vi, d(t + 1) = co x V,\d(t) + y/ \ x ran 1 x (Pi,d - Xi,d(t))
(2 .1)

+ f 2 x ran2 x (Pgd - Xi,d(t))

Xi,d{t +1) = Xt, d(t) + hi-, ¿(f +1) (2.2)

where Vu is the velocity of particle / along dimension d, rani and ra «2 are

random values on the range {0..1}, X i(i is the current position of particle i along

dimension d, P¡j is the location along dimension d at which the particle previously

had the best fitness measure, and Pgd is the current location along dimension d of the

neighbourhood particle with the best fitness. The constant co is the inertia weight

described by [Shi and Eberhart, 1998a], A high value o f a> gives a global search and a

low value gives local search, y/\ is the cognitive learning rate, y/2 is the social

learning rate. The relative influence of the particle’s memory (cognitive influence)

and the neighbourhood best (the social influence) can be adjusted. Together, these

influences make up the learning rate of the swarm. Dropping the social component

y/2 results in the Cognition-Only Model of the velocity equation:

Vi,d(t + 1) = a x Vi,d{t) + y / \ x rani x {Pi,d - Xi,d(t)) (2.3)

Now dropping the cognition component defines the Social-Only Model o f the the

velocity equation: :

Vi,d(t + 1) = (oxVi,d(t) + i / / 2xran2x(Pgd - Xi,d(t)) (2.4)

Other PSO parameters:

• X max and X min (optional) set bounds for the search area.

• Vmax (optional) sets bounds on the velocity o f a particle.

43

THRESHOLD (optional) sets the acceptable error level. A solution falling

within THRESHOLD distance of a specified value would be considered an

acceptable solution and the search would be terminated.

Initialisation of swarm:

for each particle i, i = [1..Q]

for each dimension d, d = [1..D]

set Xifd to a random value on the range [Xmin . .Xmax]

set Pi,d t o Xi/d

set Vi'Ci to a random value on the range [Vmln . .Vmax]

compute fitnessj

set pbesti to fitnessi

set g to i if fitnessi > fitnessg

Perform search:

until a terminating condition is met

for each particle i, i = [1..Q]

for each dimension d, D = [1..D]

compute Vi'd Equation (2.1)

compute Xii(i Equation (2.2)

compute fitness^

update g if fitness^ > fitnessg

update Pi,d pbest if fitnessi > pbest

Report results

Figure 2.6 Pseudo-code for PSO
44

• MAXITERATIONS (optional) sets a limit on the number of iterations to be

executed before terminating a search.

The complete algorithm for the Particle Swarm Optimiser is listed in Figure

2.6. Search starts with the random initialisation of particles’ positions and velocities

within the allowed range defined by X max, Xmin and Vmax. Usually Vmin is the negative

of Vmax- Equations (2.5) and (2.6) are used to limit the magnitude of velocity and

position.

To limit velocity of a particle along dimension d :

V,d(t + 1) = min(V max, m ax(-F max, Vi,d(t + 1))) (2-5)

To limit position of a particle along dimension d :

Xi,d(t + 1) = min(X max, m ax (X min, Xi,d(t + 1))) (2.6)

Each particle keeps track o f its own performance. At each iteration, the

velocity o f every dimension o f a particle gets updated according to equation (2 .1),

where Vid, Pi,d and Pgd constitute the particle’s momentum. As this momentum is

different for different dimension of a particle, this has effect to force the particle to

change the trajectory in the search space towards the most promising areas. This

momentum is essential, as it is the feature of PSO that allows particles to escape the

local optima. In addition the rani and ran2 in equation (2.1) adds some random

adjustments in velocities, which is essential to avoid the situation where the particle

endlessly follows the exact same path.

2.6.3 Drawbacks of PSO

PSO like any other stochastic algorithm may prematurely converge [Lovberg, 2002],

Fast rate o f information flow between particles can create similar particles resulting

45

in less diversity in the system., which increases the possibility o f being trapped in

local optima [Riget and Vesterstrom, 2002], PSO is also very much problem

dependent like any other stochastic search. No single parameter setting exists which

can be applied to all problems [Lovberg, 2002], For example choosing a value for the

inertia weight, co in (2.1), could be critical. A large inertia weight favours exploration

(global search), while a small inertia weight favours local search [Shi and Eberhart,

1998a], Thus finding the best value forruis difficult and it may vary from problem to

problem. PSO’s problem-dependent performance can be avoided by using self-

adaptive parameters. In self-adaptation, the search process uses a feed mechanism to

inform the system in favour of adjusting parameters depending on the problem

[Lovberg, 2002], Successful application o f self-adaptation has been seen on GAs

before [Back, 1992], It has been applied to PSO as well in several occasions [Clerc,

1999; Shi and Eberhart, 2001; Ratnaweera et al., 2003; Tsou and MacNish, 2003;

Yasuda et al., 2003]. Hybridisation also helps to combat premature convergence in

PSO. Hybridisation refers to combining different approaches to benefit from the

advantages o f each approach [Lovberg, 2002], Hybridisation has been successfully

applied to PSO by [Angeline, 1998b; Lovbjerg and Krink, 2002; Kalyan et al., 2003;

Reynolds et al., 2003; Higashi and Iba, 2003; Esquivel and Coello Coello, 2003],

2.6.4 PSO vs. GA

Both GA and PSO start with a group of random generated population. Also both of

them use fitness values to evaluate population. However unlike GA, PSO has no

evolution operators such as crossover and mutation rather particles update themselves

with the internal velocity. PSO uses memory, which is important to the algorithm.

The cognitive operator of PSO is personal best history and velocity inertia, but for

GA it is mutation. The social operator for GA is selection and crossover where as for

PSO it is neighbourhood best position.

46

Experiments conducted by [Kalyan et al., 2003] showed that a PSO

performed better than GAs when applied on some continuous optimisation problems.

[Robinson et al., 2002] found superiority of PSO over GAs in designing a difficult

engineering problem. [Mesot, 2004] was able to generate efficient locomotion pattern

for modular robots by using PSO and he found PSO delivered constantly better

results than GAs. [Kalyan et al., 2003] successfully combined PSO and GA to

develop GA-PSO and PSO-GA. In GA-PSO, the GA population is used to initialise

the PSO population. For PSO-GA, the PSO population is used to initialise the GA

population. Kalyan’s results revealed that both PSO and PSO-GA showed better

performance than both GA and GA-PSO. In training neural network PSO also shows

better results than GA [Eberhart and Shi, 1998b; Van den Bergh and Engelbrecht,

2000; Ismail and Engelbrecht, 2000], [Shi and Eberhart, 1998b] found that the PSO is

not sensitive to the initial swarm size, which means that PSO with smaller population

size can perform comparably to GAs with larger population.

2.7 Summary
This chapter provided a brief overview of optimisation. An introduction o f global and

local optimisation has been given. This was followed by a brief discussion of

traditional and stochastic optimisation methods. Traditional algorithms are also

known exact methods. Brute force and Branch-and-Bound algorithms were

introduced as examples o f exact methods. Then introduction of three major stochastic

algorithms were given. These were Hill-Climbing, Simulated Annealing and Tabu

Search. Evolutionary algorithms (with more emphasis on genetic algorithms) were

then presented. Different control parameters for GA were explained. Mechanisms to

tackle premature convergence in GA were also mentioned. This is followed by an

elaborated discussion of particle swarm optimisation and its various modifications.

PSO equations and parameters were explained. References have been given for the

47

use of hybridisation to combat premature convergence in PSO. Finally a brief

comparison of the PSO and GA has been provided.

48

Chapter 3

The n-tuple Classifier

3.1 Introduction
An n-tuple classifier is a memory-based method. It is a type of a neural network with

a structure that could be easily implemented using a RAM (Random Access

Memory). It forms the basis o f a commercial product [Aleksander et al., 1984], The

n-tuple method is more specifically known as a type of Weightless Neural Networks

(WNN) or RAM networks (RAM-net). The following sections will introduce both the

weightless and weighted approach on neural networks and later the n-tuple system

will be elaborately described. The motivation behind the optimisation of n-tuple

method will be explained also.

3.2 Artificial Neural Network
An Artificial Neural Network (ANN) - an abstract model inspired by knowledge of

the brain’s function - is a collection of interconnected elements that can learn to

recognise patterns [Boone et al. 1990a; 1990b; Rich and Khight, 1991], ANNs

contain a large number o f very simple, neuron-like processing elements (PE) and a

large number o f weighted connections between these elements. A PE is

essentially an equation which is often referred to as a transfer function.
49

Figure 3.1 Layers in ANN

Figure 3.2 Feedforward network

Figure 3.3 Recurrent network

50

A processing unit takes weighted signals from other neurons, possibly

combines them, transforms them and outputs a numeric result. Many neural networks

have their neurons structured in "layers". Layers are made up o f a number of

interconnected 'nodes' which contain an 'activation function'. Typically the PEs are

arranged in layers (Figure 3.1); with the input layer receiving inputs from the real

world and each succeeding layer receiving weighted outputs from the preceding layer

as its input. Hence the creation of a feedforward ANN (Figure 3.2), where each input

is fed forward to its succeeding layer. The first and last layers in this ANN

configuration are typically referred to as input and output layers. Any layer between

the input and output layers are called hidden layers because they do not have contact

with any real world input or output data. Unlike a feed forward ANN, in a recurrent

type network connections can go in either direction from all layers, Figure 3.3.

Because o f the feed back connection recurrent networks produce complex, time-

varying outputs in response to simple static input which is important when generating

complex behaviour. The architecture of an ANN is determined by the overall

connectivity and transfer function of each node in the network.

3.2.1 Learning in an ANN

Most ANNs contain some form of 'learning rule' which modifies the weights o f the

connections according to the input patterns that it is presented with. In a sense, ANNs

learn by example. Neural networks are "trained", meaning they use previous

examples to establish (learn) the relationships between the input variables and the

predicted variables by setting these weights. Once these relationships are established

(the neural network is trained), the neural network can be presented with new input

variables and it will generate predictions. The ability to identify the rules, to

generalize, allows the system to make predictions. This property is known as the

generalization of ANN. To simulate intelligent behaviour the abilities of

51

memorization and generalization are essential. Learning in ANNs can roughly be

divided into supervised, unsupervised and reinforcement learning. Supervised

learning is based on direct comparison between the actual output of an ANN and the

desired correct output, also known as the target output. Back propagation [Hinton,

1989] is one o f several possible learning rules to adjust the connection weights during

learning by example. Learning occurs when the network weights are adjusted as a

function of the error found in the output of the network. The error is the difference

between the expected output and the actual output. The weights are adjusted

backwards (back-propagated) through the ANN network until the error is minimized

for a set of training data. In reinforcement learning the exact desired output is

unknown, but it gets the information of whether the actual output is correct or not.

Unsupervised learning even doesn’t get the information on correct output. It is solely

based on the correlations among input data. The algorithm of learning rules

determines how the connection weights are changed. Among the popular learning

rules there are delta rule, Hebbian rule, the anti-Hebbian rule and competitive

learning rule [Hertz et al., 1991],

3.2.2 Weightless Approach

The weightless neural networks use explicit storage elements to keep its state, rather

than in its inter-element connections, as more conventional networks do. In

weightless approach there is no variable weight between the nodes rather neuron

functions are stored in look-up tables. The learning algorithm is very simple, the

patterns are presented to the inputs o f the network and then the patterns are stored in a

certain way, which results in highly flexible and fast learning algorithms. In

weighted models, training is much more complex since changing weights to train a

given input-output mapping changes the nodes behaviour to other patterns learned

52

previously. The very first work in this field is described by [McCulloch and Pitts,

1943; Hebb, 1949 and Rosenblatt, 1958],

From the experimental studies presented in [Ludermir et al. 1999; Christensen

et al., 1996; Hepplewhite and Stonham, 1997; Jorgensen, 1997; McCauley et al.,

1994; Ramanan et al., 1995; Rohwer and Morciniec, 1996; Wang et al., 1996] the

effectiveness of WNN models can be realised. Since the original work by [Bledsoe

and Browning, 1959] many weightless models were proposed such as the

Probabilistic Logic Node (PLN) by [Aleksander, 1989]. Aleksander also proposed

the concept of multi-layer architecture [Kin and George, 2005]. Some of the other

WNN models include the probabilistic RAM (pRAM) [Austin, 1994], Goal Seeking

Neuron (GSN) [Austin, 1998], Boolean Convergent Network (BCN) [Howells et

al., 1995], Generalised Convergent Network GCN [Howells et al., 1995], Probabilistic

Convergent Network(PCN) [Howells et al., 1995], Moving Window Classifier

[Hoque, 2001] and Deterministic Adaptive RAM Network (DARN) [Yee and

Coghill, 2004],

3.3 An n-tuple Classifier
Although the n-tuple classifier is not famously popular compared to some other

methods, such as multilayer perceptrons, the n-tuple classifier does have its own

advantages over a variety o f pattern recognition algorithms [Rohwer and Morciniec,

1998], The networks based on the n-tuple method have two great strengths, they can

be trained quickly and they can be implemented in conventional computers simply

compared to other equation solving and minimising methods. The training of the

basic classifier is a one-shot memorisation process. These advantages come at the

cost of recognition robustness. It has been shown that the n-tuple method can result

in quite reasonable recognition performance if used with care [Rohwer and

Morciniec, 1998].

53

An n-tuple classifier is based on conventional random-access memory

(RAM). The network is built out of RAM nodes and consists o f a set of

discriminators, each representing a class to be leamed/recognised. Figure 3.4 shows a

Output

Figure 3.4 1 bit Ram Node

Ram Node 1

Output

Figure 3.5 A Discriminator
54

logic functionsInput Frame function response

0 0 0 OQi 0 1 0 O i l 1 0 0 101 110 ill

—S. Z—

pixel n-tuple
<n=3) memory locations

discriminator
response

Figure 3.6 A discriminator illustrated by [Tambouratzis, 2000]

representation of a typical RAM node. The 1-Bit-RAM node is a device which can

store one bit o f information for each input address. The input address of the RAM

unit is also known as “tuple”. If the width o f the address bus (also known as input

connection map) is n bits (as shown in Figure 3.4) then the tuple is termed as “n-

tuple”. The width o f the address bus is also known as “tuple-size” [Bledsoe and

Browning, 1959], A control input is available for switching the mode between 'Write'

and 'Read' for learning and recall. Initially all memory units are set to 'O'. During the

learn ('Write') mode the memory is set to T for each supplied address; in the recall

('Read') mode the output is returned for each supplied address, either 'T (if the

pattern was learned) or 'O’ (if the pattern was not learned). A RAM node is limited to

learn binary patterns (which is the memory's address word), its output is also binary.

55

A group o f RAM nodes in a tree-like structure is called a discriminator

(Figure 3.5). The discriminator achieves its goal by presenting to each neuron only a

subset o f the input pattern, and adding up the outputs of its RAM nodes. This sum

can be seen as a measure of the recognition confidence o f the discriminator.

Therefore, when the discriminator sees a previously learned pattern, its integer output

reaches the discriminator's maximum. For an input vector, o f size L, the number of

necessary RAM nodes R o f connectivity n that should be used to cover all inputs of

the input vector should satisfy: R x n > L. L is known as the resolution of an image.

If W and H denote the width and height of an input image, then image resolution, L,

will be given by the following formula:

Image Resolution, L = W x H (3.1)

The n bits o f a tuple constitute a “feature” o f the pattern. Collectively R set of

n-bit patterns are called “input mapping” or “connectivity pattern” denoted by 77

[Rohwer and Morciniec, 1996], 77 comprises all the information from the L bits input

pattern available to the recogniser. Figure 3.6 illustrates how a group o f tuples or a

discriminator is connected to a binary picture of a digit. This particular example was

used in [Tambouratzis, 2000] where the n-tuple size was 3. The resolution of the

image is 56 bits according to equation (3.1). The figure shows just one discriminator

There are eight memory locations correspond to n=3. An adder has been shown in

Figure 3.6 to combine the responses of individual tuples in the group. The number of

classes, which need to be distinguished by a network, determines the number of

discriminators needed in a network. The network shown in Figure 3.7 can be used to

distinguish a fixed number o f classes. If it consists o f C discriminators, it can

differentiate C classes. The memory size required by the network will be given by

equation (3.2), where R is the total number o f available tuples with tuple-size of n

bits and every memory location addressed in a tuple will have 1 bit reserved for each

discriminator.
56

M em ory size = R x 2" x C (3.2)

Discriminator 1

iMilliWBii
Majority

Decision

Block

Winner

Class

Figure 3.7 An n-tuple network

The Majority Decision Block (MDB) [Jorgensen et al., 1995] at the outputs of

the adders chooses the winner class using some criteria such as the greatest sum, a

threshold of the greatest sum, difference between sums etc. In greatest sum approach,

the discriminator containing the greatest number o f active RAM nodes is selected.

Thus a pattern is 'recognized' as the one whose discriminator 'fired' the most, that is,

the discriminator with the highest count of memorized tuples. Two measures of

57

confidence can be used [Bishop, 1989; Mitchell and Minchinton, 1996], Absolute

Confidence AC and Relative Confidence RC:

Most Number o f ‘fires ’ - Next highest
AC = -- (3 J)

Number o f Tuples

Most Number o f fires ’ - Next highest (3 4)
RC =

Most Number o f fires ’

3.3.1 Architectural Parameters

The n-tuple network has the ability to memorise and generalise. Memorization is an

obvious task in learning. This was implemented by storing the input samples

explicitly. Generalization allows the system to make predictions on unknown data.

Generalization can dramatically reduce the amount o f memory needed, and produce a

very efficient method of memorization. In equation (3.2) the exponential relationship

makes the choice o f n very sensitive. The larger the n-tuples selected, the fewer the

number of tuples required to cover the entire image. It can be noted that as n increases

the memory requirements by the network also increases. This imposes a physical

limit to the value of n. For n=L the system would have a single huge impractical

memory and wouldn’t be able to generalize i.e. be able to recognise patterns that were

not exactly like those taught. On the other extreme if n=l, all the locations in the

memory are filled with Is quickly and the network saturates and loses its

discriminative power [Ullmann,1969; Tarling and Rohwer, 1993], Thus when larger

value of n is chosen saturation becomes less problem but with a very large value of n

the system loses it ability to generalize.

It has been found empirically that for a given size of training set, there is an

optimum value n which will give maximum performance [Aleksander and Stonham,

1979], [Ullmann, 1969] showed how the percentage of correct classification is
58

increased to a peak with the increase in value of n. After the peak the percentage of

correct classification falls with a further increase in n. For larger training sample a

higher peak was found for a larger value of n but the shape of the curve remained the

same. [Hoque, 2001] demonstrated the performance of the n-tuple classifier for

different training set sizes taken from the NIST numeric database [Wilkinson et al.,

1992], Figure 3.8 shows the graphical plot o f the reported results in [Hoque, 2001], It

depicts the relationship between the number of train images and the recognition rates

of an n-tuple network with the tuple-size 12. The rise in accuracy with increase in

training patterns was significant at 1000 training images per class.

Input connection mapping (rj) is another important parameter for n-tuples.

Conventionally input mappings are randomly chosen [Bledsoe and Browning, 1959],

It has been demonstrated in [Picton, 2000] that a randomly connected system perform

better than a network with an ordered map. Orderly fashioned input connection failed

59

because the patterns being discriminated were very similar to the way the system was

organised. Random connection was favourable because randomness doesn’t have a

pattern with it. [Fairhurst and Stonham, 1976] have shown that the n-tuple scheme is

relatively insensitive to the connection mapping. Flowever [Aleksendar and Stonham,

1979] have argued that a random map is suitable for an un-optimised problem

because sampling points distributed throughout the pattern matrix are more likely to

detect global features than an ordered map. For an optimised case better selection of

input mappings can give a relatively better performance [Aleksander and Stonham,

1979], [Bishop et al., 1990] demonstrated the importance o f sampling sequence in

discriminating similar classes. They illustrated the fact with two 16-bit data pattern as

shown in Figure 3.9. If four 4-bits tuples are used and each tuple was formed from

each column three of the tuples would be identical, so 75% pattern would be same.

But if tuples are formed by taking bits from each row then none of the tuples are

identical and it helps to discriminate the patterns.

Figure 3.9 Effect of input mapping shown in [Bishop e t a l., 1990]

60

3.4 Motivation for Optimisation
The classification performance o f the n-tuple classifier is highly dependent on the

input bits probed [Bishop et al., 1990; Jorgensen et al., 1995]. The number of

possible connections for a 32 by 32 binary pattern matrix is enormous. Let us

consider an n-tuple classifier of 140 tuples with the tuple-size 8 bits. For an input

binary image with a resolution of 32 bits by 32 bits the total number of available

pixels will be, from equation (3.1), 1024 bits. Now if the same pixel doesn’t repeat in

a tuple then the possible number of tuples that can be formed is found by the

formulae o f combination, M = 1024Cg ~ 2.91 x lO 19. M tuples when divided into

groups o f 140 then total number of combinations will be B = mCmo, which is a very

large number. Therefore an exhaustive search for B mappings is impossible.

The classification performance is a function o f input mappings and it

approximates to a normal distribution [Aleksander and Stonham, 1979], where the

majority of the mappings give average performance, but a small number of

connection mappings give a relatively better performance. Figure 3.10 demonstrates

the classification histogram for a subset of the NIST [Wilkinson et al., 1992] database

where two thousands maps were generated randomly and the frequencies of maps for

recognition rates were plotted. If all B mappings as explained earlier were available,

the tail on the right side o f the histogram would go much further as shown by the

imaginary dotted area in Figure 3.10. Finding mappings in this dotted optimisation

zone is extremely challenging. The detection o f mappings in this area by random

search is governed by chance.

[Bishop et al., 1990] demonstrated the importance of choosing right sequence

in which input is sampled to discriminate similar classes. For example, consider an n-

tuple system which is trying to recognise and classify 8 ^ 8 images of characters and

for which the tuple size is 8 . Figure 3.11 and Figure 3.12 show two similar characters,

for c and for e, for which there are 8 pixels which are different and there are 8 tuples
61

to sample the image. Now consider a situation where the eight different pixels are

sampled and formed into one tuple and the other tuples are formed by the pixels

which are common to both the letters. This way of the eight tuples used to sample the

image, seven will be identical. Therefore, if an e is presented to the two

discriminators, all eight neurons in the ‘e-discriminator’ will fire, and seven neurons

in the ‘c-discriminator will fire. If, however, one sample of each tuple came from the

area where the pixels differ, then all eight tuples will be different, so all eight neurons

in the ‘e-discriminator’ will fire, and no neuron in the ‘c-discriminator’ will fire.

&
03

300

250

200

150o3U

I 100
3
z

50 -

--
1---

-

4
4

4

1 1

4

4
4

4
4-

4
4

4- Optimisation
/

4- 4 zone /

- * -4-

____4 4 4 T_____________i______________i______________l

4 r

______4 & i______________i_____________J

78 79 80 81 82

Recognition rates (%'

'8 3 - ,. 84 . . - - ' '8 5

Figure 3.10 Classification histogram using NIST database, 140 tuples of tuple-size 8

62

Thus the sequence in which the input is sampled and the tuples formed can

have a significant effect when discriminating between similar classes. When the

letters being analysed are very different, for example, an E and an i, then the system

will have little difficulty discriminating between the classes, irrespective of the

sequence in which the input is sampled. Therefore, when attempting to discriminate

between many classes, some of which are similar, the input should be sampled in one

sequence for some class discriminators, but in other sequences for other class

discriminators.

[Bishop et al., 1990] applied a basic evolutionary technique to determine the

sequence in which the input is sampled and the tuples formed. One sequence of input

samples was used for the discriminators for most of the characters, but different

sequences were used for the discriminators of characters which are too similar, such

as c and e (Figure 3.1 land Figure 3.12), i and /.

The solutions suggested by [Bishop et al., 1990] were the sequence of samples

to increase the orthogonality o f response of each discriminator. A mutation technique

was used to form tuples. The performance of the system with this mutation was

evaluated by measuring the relative confidence (3.4) and a decision was made if the

new mapping should be adopted. The mutation was realized by swapping addresses

used to sample the data patterns so as to form the tuples. After Bishop’s work genetic

algorithm was revisited by others more recently [Garcia, 2003; Farhan-Khola and

Flowells, 2003] to optimise the input connections of n-tuple network. Other stochastic

search algorithms like Tabu search and Simulated Annealing (described in Chapter 2)

were applied by [Garcia and Souto, 2004] to choose the connectivity pattern of n-

tuple classifier.

The backtracking method [Ellis and Sartaj, 1984; Thomas et al., 1990] has

been found to be more superior than any exhaustive search or random selection

method as it strives to eliminate unviable solutions. The process o f going back to the
63

Figure 3.11 Image of character c similar to e

F igu re 3.12 im age o f character e sim ilar to c

64

nearest decision facilitates to choose new component in solution vector and this leads

to the name backtracking. [Jung et al., 1996] used backtracking algorithm to generate

distinguishing tuples for selected character dichotomies. Initially they tried generating

tuples at random. But random selection method found no tuples for more difficult

dichotomies like c and e.

[Jorgensen et al., 1995] described a simple input selection strategy that makes

use of a leave-one-out cross-validation test [Hand, 1986], It involves using a single

observation from the original sample as the validation data, and the remaining

observations as the training data. This is repeated such that each observation in the

sample is used once as the validation data. [Jorgensen et al., 1995] introduced an

information measure (denoted the cogentropy) to evaluate the quality of a given

combination of tuples. The concept of information measure was combined with the

cross-validation and was found advantageous to obtain an n-tuple network with a

better performance than a randomly trained network of the same size.

The explanation and examples mentioned above confirmed that it was

favourable to optimise input connections o f the n-tuple network. Improvement in

performance due to optimisation was noticeable [Bishop et al., 1990; Jorgensen et al.,

1995; Jung et al., 1996]. It provided insight to this research to investigate other

methodologies to improve the connectivity pattern of the n-tuple classifier. The

proposed approach was based on particle swarm intelligence. In the selection process

of the algorithm the performance of each tuple was measured with a reward and

punishment based scheme [Azhar and Dimond, 2004a], Each tuple associates a

memory of its own performance. The strategy was to keep the best-performed

configuration over a lifetime of a tuple. Once the target set of best-performed

configurations are sought the optimal set o f tuples are exploited for the final

recognition task.

65

3.5 Summary
This chapter provided an introduction of Artificial Neural Networks with the focus on

the weightless approach. A memory based n-tuple network has been chosen in this

research for optimisation, so the architecture of this network has been described in

detail. Both the training and learning algorithms o f n-tuple networks have been

explained. It has been shown that the connectivity pattern o f the n-tuple system plays

important role in selecting features of a pattern class. In the traditional method the

connectivity pattern is defined at random and then fixed training. Choice of the right

sampling sequence can improve the discrimination power of the network

considerably. Considerable research presented in this chapter showed that it was

promising to optimise the connectivity pattern of n-tuple networks for improved

recognition performance. Being successfully applied in many other areas particle

swarm intelligence has its merits in selecting important features of the input patterns.

As in PSO the connectivity pattern is not defined at random, the RAM nodes will not

be uniformly distributed along the input vector. Thus the PSO increases the

probability o f many RAM nodes to be connected to relevant features of the input

vector. This chapter presented these arguments and motivations behind the proposed

optimisation choices and also the theory o f the chosen n-tuple network for this

research.

66

Chapter 4

Experimental Framework

4.1 Problem Definition
The effectiveness of an algorithm was tested through experiments. Experiments were

set-up to train an n-tuple network with a modelled algorithm and then to test if the

training improves the recognition performance o f the network. For the training and

testing purpose a database were required. Selection of standard database for the

experiment was very crucial. Section 4.2 will describe the arguments behind

choosing a specific database for the experiments. Database contains different classes

that will be recognized by the network. In a traditional n-tuple network there will be

specific number o f tuples and these will be connected to the input image through

random connections. Number of tuples in the network will define the architecture of

the n-tuple classifier. Images for the experiment will be handwritten digits in binary

form. So a connection between a location of an image and the tuple will carry one bit

o f information.

Optimisation algorithms will be used to find better input connections to the

tuples so that tuples get connected to the important areas o f an image. The purpose of

the experiments will be to find an optimal set o f input connections to the tuples. It

will be extremely rare to find a connection to a tuple such that the connection is
67

equally good for all different types of images or classes. This is because there will be

similar classes in the system and the overlapping region between similar classes will

cause the discrimination task much harder. There will be classes in the dataset which

will have complicated pattern and it will be difficult for the classifier to recognize this

pattern. This difficult class of images can be termed as a critical class. It is logical to

say that the discriminating power of a critical class can be improved if enough tuples

are available to connect to the important featured areas of a class. So for a better

recognition o f a critical class it is desirable to provide more tuples than the number of

tuples required for a non-critical class. The strategy was to use the optimisation

algorithm to tune more tuples for a critical class than a non-critical class.

A tuned tuple is known as a class-specific tuple, which best describes a

specific class but also describes other classes to some extent. Thus there will be a

number of class specific tuples for different classes. These groups of tuples will try to

improve the recognition rates of their own specific classes as well as other classes and

eventually by working together all these tuples will improve the overall recognition

rate of the images. So clearly there will be different number o f class-specific tuples

for different classes. In the experiments these numbers were calculated by finding

error rates of a randomly connected n-tuple classifier. At first a traditional randomly

connected classifier was used to find the error rates o f different classes. Then total

available tuples were divided into different classes proportionately to the error rates.

This assumes linear relationship and this assumption is the first approximation. So the

class with the most error rate gets the most number of tuples and the class with the

least error rate gets the least number o f tuples. All experiments for optimisation task

will find these optimum set of class specific tuples and once found the whole set will

be used to recognise the test data set. Once recognition rates are found, the

experiment will be repeated several times to facilitate statistical significance testing

(Section 4.4) and to check if the results are consistent. Later a statistical plot (Section

68

4.5) will help to visually summarize the distribution o f recognition rates. Reasons for

choosing specific n-tuple size have been given in Section 4.3.

4.2 Database Selection
Standard databases have become very important to facilitate research in character

recognition [Guyon et al., 1997]. They are an essential requirement for the

development, evaluation and comparison o f different character recognition

techniques. Databases can be collected in a laboratory environment in which subjects

prepare samples on standard forms that are then digitised. But the awareness by the

subjects of the use of their handwriting may introduce biases into the data. In light of

this, an acceptable character image database should be produced from real world

environments so that the writings are truly unconstrained and more representative.

Some examples of such publicly available database can be found in [CEDAR

CDROM-1, CEDAR CDROM-2, ERIM, NICI], The database used in this research

was a fairly large real life database compiled by U.S. National Institute of Standards

and Technology, and is often popularly known as NIST database [Wilkinson et al.,

1992],

4.2.1 NIST Database

NIST released Special Database 3 (SD3) in February 1992 as the official training

materials for the First Census Optical Character Recognition (OCR) Conference

[Wilkinson et al., 1992]. The conference discussed the performance of 45 OCR

systems submitted by 26 academic and industrial organizations. SD3 was included of

a CD-ROM distributed by NIST and the CD-ROM contains images of 3699

Elandwriting Sample Forms (HSFs) and 814255 segmented handprinted digit and

alphabetic characters from those forms. An example EISF form can be found in

Appendix B. There are several partitions, denoted by hsf_{0,l,2,3j, in SD3 containing

digits, upper and lower images. The writers of the SD3 partitions were Census Bureau

69

field personnel stationed throughout the United States. A separate partition o f images,

denoted by hsf_{4}, was released as the testing materials for the OCR conference and

it was named as Special Database 7 (SD7) [Wilkinson, 1992], Images of SD7 were

obtained from 500 HSF forms completed by high school students in Bethesda,

Maryland. Thus the training set and the test set used in the OCR conference were

representative of different distributions: the training set consisted of characters

written by paid US census workers, while the test set was collected from characters

written by high school students. Examples from these training and test sets are shown

in Figure 4.1 and 4.2. Notice that the test images contain some very ambiguous

patterns. The general conclusion of the conference was that the testing images of

hsf_{4} are more difficult, in a recognition sense, than the images of hsf_{0,l,2,3}.

This was later demonstrated in [Grother, 1993],

5 a £ A ¥
3 v- S

O & \ 5 f
/ H Cr G Û
f l $ o z

Figure 4.1 Typical images from NIST training set

70

1 £> QQ
¥ t S 4
f q 3 i
¥ / G 7
* M 7 2 l

Figure 4.2 Typical images from NIST test set

In this research the partition hsf_{0} of the Special Database 3 was used for

training and the partition hsf_{4} of the Special Database 7 was used for testing.

NIST recommends using images o f hsf_{4} for testing as they are more difficult from

other partitions and this ensures the heterogeneity between the training and testing set

(see analysis in [Wilkinson et al., 1992]), a fact which is reflected in the results

presented in this thesis. The numeric data set consisting only the digits (0,1.. .9) was

used for the experiments. Each character is a binary image with the dimension 32 by

32. All digits are scaled into same dimension and centred. In the partition hsf_{0}

there are 1000 images per class for training and in the partition hsf_{4} there are 1000

images per class for testing.

4.3 Tuple size and R
The performance of the n-tuple method depends mainly on the size o f the n-tuple

chosen [Aleksander and Stonham, 1979; Rohwer and Lamb, 1993; Ullman, 1969;

Ullman and Kidd, 1969], [Hoque, 2001] performed an experiment to compare the

accuracy of n-tuple classifiers as the tuple size varied from 2 to 16. Numeric data
71

consisting o f digits were used from three different databases. Results in the Figure 4.3

employed random connection mappings and correspond to the mean of several test

runs. DB1 in the figure was extracted from machine printed postcodes supplied by

British Post Office. The DB2 contains images extracted from envelops o f British

mail. Both the database contains 300 binary images o f each character. DB3 was the

NIST database with 1000 images per character as described in the previous section.

DB1 and DB2 showed peak accuracies around n=10 where as DB3 showed peak

accuracy around «=72. Hoque’s work [Hoque, 2001] confirmed Ullmann’s [Ullmann,

1969] explanation about the relationship between the recognition performance and

the value o f «. Being the largest database DB3 needed larger n-tuples because, when

the number of training examples increases it generally becomes more difficult to find

features o f low dimension that can distinguish between examples of different classes.

tuple-size, n
Figure 4.3 Performance of n-tuple network as a function of n-tuple size

72

The value of n also plays important role determining the hardware memory

space required (3.2) by the classifier. A balance has to be made between the memory

size, the amount of training data and the value o f n. Experiment results, for instance,

showed that a bigger size n is better, until it approaches an impractical large size,

though a value of n =8 turned out to be enough for many applications [Rohwer and

Lamb, 1993]. [Jorgensen, 1997] made use o f leave-one-out cross-validation (CV)

[Hand, 1986] and found «=8 as the smallest tuplesize for the lowest CV error.

[Rohwer and Morciniec, 1996] suggested 8 as a good choice for most data sets. For

chosen database in this research n -8 gives reasonably good recognition performance

of 80.93 [Azhar and Dimond, 2004a] with 150 tuples (R). [Rohwer and Morciniec,

1996] argued that the recognition rates should become increasingly consistent with

increase of the total number available tuples, R. From practical experience they found

that the values of 100 to 1000 for R usually turned out to be adequate. [Jorgensen,

1997] reported error rates on the task of recognising handwritten digits for different

values o f R and found better results for a higher value o f R. Reported error rates with

935 and 807 tuples were 3.6% and 2.8% respectively. While choosing the value o f R

the classification time has to be also looked at. [Jorgensen, 1997] found classification

error rates with 807 tuples to be 30 ms and with 200 tuples to be 4 ms while running

the code under Windows NT in a 90 MHz Pentium. The physical memory

requirement o f the network also limits the choice of R. With 150 tuples, tuple size of

8 and a 32 by 32 binary image the required memory will be 384000 bits (3.2). For a

fixed n the value o f R has to satisfy the relation R > L/n (Section 3.3), so that enough

tuples are available to cover the whole input matrix of size L.

4.4 Significance Testing
Once recognition performance have been gathered through experiments, statistical

inference will allow us to assess evidence in favour or some claim about the

73

population from which the sample of recognition rates has been drawn. The methods

of inference used to support or reject claims based on sample data are known as tests

of significance. Significance testing is necessary where data is gathered from a

sample and not from the entire population. Significance testing tells us how confident

we can be that the survey sample accurately reflects the views o f the entire

population. A significance level is the probability that the result is true and not just a

random variation. The t-test is a form of significance testing.

A t-test decides if the two data sets come from the same population (Case I in Figure

4.4) or from different populations (Case II in Figure 4.4). The t-test measures the

likelihood that two results being compared could have been found purely by chance.

It does this by comparing the mean value o f two sets of data. The difference between

two means is normally distributed for large samples.

4.4.1 Student’s T-test

Case I \s
\ \

Population 1

Population 1 Population 2

Figure 4.4 Cases in t-test

74

The t-distribution approximates this normal distribution in large samples. For

small samples, the distribution of differences in the mean is not quite normal. This

discrepancy was noted by a quality control statistician at Guinness Brewing (W.S.

Gossett) [Porter, 1986], Since quality control could involve only small samples, the

statisticians required a test statistic that performed well for small samples. The t-

distribution was widely used after this insight. Gossett and Pearson worked together

for a short time and published their findings in 1896 (correlation/Pearson), 1900 (chi-

square/Pearson) and 1908 (t-distribution/Gossett) [Porter, 1986]. Flowever, because

the brewery did not allow employees to publish their research, Gossett's work on the

t-test appears under the name "Student".

Every test o f significance begins with a null hypothesis H0. A hypothesis is a

statement designed to be proven or disproven. Null hypothesis says there is no

difference between the means. An alternate hypothesis, HA, is also set up, which is the

hypothesis to be adopted if the null hypothesis is disproved. Case I in Figure 4.4

represents the null hypothesis H 0, indicating that the mean of group one equals the

mean of group two; both samples come from the same population. Case II represents

the alternate hypothesis HA, indicating that the mean of group one does not equal the

mean of group two; the two sample means are from different populations. A t-test

decides which of these hypotheses to accept.

T-test assumes that the data are independently sampled from a normal

distribution. The two means and the corresponding standard deviations are calculated

by using the following equations (nA and nB are the number of measurements in data

set A and data set B, respectively):

(4.1)

75

(4.2)
X B =

H B

z
/=1

S a =
(4.3)

(4.4)

S b = i= 1
t lB - 1

Then, the pooled estimate o f standard deviation 5 ^ is calculated:

Sab
I (n.4 - l),Sh2 + (» / y - l) ^

/Z/i + r iB - 2

(4.5)

Finally, the statistic texp (experimental t value) is calculated:

x a - X B
exp

SabJ — + —
V H B

(4.6)

value is compared with the critical or theoretical t value, tth, corresponding

to the given degree of freedom, ‘d f (in the present case d f = nA + nB - 2) and the

confidence level chosen. The confidence level is the percentage likelihood at which

76

the test was carried out. Tables of critical t values can be found in any book of

statistical analysis, as well as in many quantitative analysis textbooks. If texp exceeds

the tabled value, the means are significantly different at the confidence level that is

listed. texp>tth means that the null hypothesis, Ho, is rejected and the alternate

hypothesis is accepted. However, if the experimental ¿-value, texp, had been less than

the theoretical ¿-value, tth, the null hypothesis would have been retained. The higher

the confidence level, the more certain one can be that there really is a difference in

the two groups being tested. For example, 95% confidence means that there is only a

5% chance that such a difference in scores could have been found purely through the

effects of sampling.

Instead of comparing the texp and t,h to determine significant difference, one

may also compare the alpha level and /»-values. An alpha level, a, is the probability

that the null hypothesis will be rejected in error when it is true (a decision known as a

Type I error, or "false positive"). It is the number of times out of 100 someone will be

incorrect if the null hypothesis is being rejected. If someone chooses an alpha level of

0.05, 5 times out of 100 he/she will be incorrect if the null hypothesis is rejected. 95

times out o f 100 , he/she will be correct because it is more likely that the means come

from two different populations (Case II). A /»-value,/?, is the probability of observing

the given result by chance given that the null hypothesis is true. Small values o fp cast

doubt on the validity o f the null hypothesis. If the p-value is less than the alpha level,

the alternate hypothesis is accepted. However, if the /»-value was greater than the

alpha level, p>a, the null hypothesis would be retained.

In Matlab [MathWorks, 2007] the following function performs a ¿-test to

determine whether two samples from a normal distribution could have the same

mean.

[H, P, Cl, STATS] = TTEST2(X, Y, ALPHA, TAIL) (4.7)

77

The null hypothesis for the above function is //o="means are equal". For TAIL

= 0 in equation (4.7) the alternative hypothesis, HAi is: "means are not equal". For

TAIL = 1, Ha = "mean o f A is greater than mean of Y". For TAIL = -1, HA = "mean of

A is less than mean o f T". The default value of TAIL in (4.7) is zero. ALPHA is

desired significance level (ALPHA = 0.05 by default). P is the /»-value. Cl is a

confidence interval for the true difference in means. STATS is a structure with two

elements named Is tat' (the value of the t statistic) and 'd f (its degrees of freedom). If

equation (4.7) returns a zero value for H then it indicates that the null hypothesis

cannot be rejected at significance level o f alpha. If the value o f H is returned as 1 then

it means that the null hypothesis is rejected at significance level of alpha.

o
(Ucr

+ ◄----- Outlier

82.5 - -

82 -

81.5 | 75th percentile

\81 \ /
Median ------►>------ {

/ , \ J
80.5 25th percentile

I

80

i

_ L
--- 1______

-

1
Method

Figure 4.5 Box plot

78

4.5 Box Plot
A boxplot, or box and whisker diagram, [Chambers et a!., 1983] is a very

useful tool for graphically portraying the empirical distribution of data. It gives a

quick insight into the empirical distribution o f data and its statistics. [Tukey, 1977]

invented box plots as a powerful way of summarizing distributions o f data. This

graphical technique has been applied with success elsewhere [Yusta et al., 1998;

Bounessah and Atkin, 1994; O'Connor and Reimann, 1993; Kiirzl, 1988], Boxplots

are especially useful when comparing two or more sets o f data.

Figure 4.5 has several graphic elements: The lower and upper lines of the

"box" are the 25th and 75th percentiles of the sample. The distance between the top

and bottom of the box is the interquartile range. The 25th percentile is where, at most,

25% of the data fall below it. The 75th percentile is where, at most, 25% of the data is

above it. The line in the middle of the box is the sample median. The median is the

point where 50% of the data is above it and 50% below it. If the median is not

cantered in the box, then it shows an indication o f skewness. The "whiskers" are lines

extending above and below the box. They show the extent of the rest of the sample

(unless there are outliers). Assuming no outliers, the maximum of the sample is the

top of the upper whisker. The minimum of the sample is the bottom of the lower

whisker.

By default, an outlier is a value that is more than 1.5 times the interquartile

range away from the top or bottom of the box. The plus sign at the top of the plot is

an indication o f an outlier in the data. This point may be the result o f a data entry

error, a poor measurement or a change in the system that generated the data. The

point o f the notch in Figure 4.5 falls at the mean, and the height o f the notch

corresponds to the 95% confidence interval [Streiner, 1997], which is defined as:

95%C7 = x ± 1 . 9 6 x S D (4.8)

79

Where x is the mean, SD the standard deviation, and n is the sample size.

Matlab’s [MathWorks, 2007] statistical toolbox has a function to produce notched

box and whisker plots for distributions of data. In Matlab notches represent a robust

estimate of the uncertainty about the medians for box-to-box comparison. Boxes

whose notches do not overlap indicate that the medians o f the two groups differ at the

5% significance level.

4.6 Software used
Software was written for various optimisation algorithms and the n-tuple network.

C++ language was used to code algorithms. The results were obtained with the code

running under Windows XP on a 2 GHz Pentium 4 machine with 512 MB main

memory. Matlab’s statistic toolbox was used to perform Student’s t-tests and produce

box plots. Results were also plotted with Microsoft Excel’s chart wizard.

4.7 Summary
This chapter explained the basic experimental procedure for experiments. Basic

procedure involves in use of train-data to optimise the input connection of the n-tuple

classifier and then to use the optimised classifier to recognize the test-data. Selection

of NIST’s Special database 3 and 7 as train and test data respectively has been

argued. The term ‘critical class’ has been defined and use o f ‘class-specific’ tuples to

describe critical classes has been explained. Class-specific tuples are sought in the

experiments. An optimum set of class-specific tuples eventually improves the

recognition rates o f the classifier. It has been mentioned that the experiments are

repeated several times to confirm the consistency in results. Testing the statistical

significance o f the results are also important and it has been explained how student’s

t-test and box plot can help on this regard.

80

Chapter 5

Reward and Punishment Based Method

5.1 Introduction
Realizing the fact that the classification performance of the n-tuple classifier is highly

dependent on the actual subset of the input bits probed [Bishop et al., 1990;

Jorgensen et al., 1995], a novel approach was introduced based on a Reward and

Punishment (RnP) scheme to select input mappings o f the classifier. Classes with

high error rates were termed as critical classes and different groups o f tuples were

formed for different classes. The strategy was to employ more number of tuples to a

critical class-group than an easily distinguishable class. In order to illustrate the

capabilities of the RnP based measure the task of recognizing hand-written digits

from NIST [Wilkinson et al., 1992] database was chosen. Next section will explain

the importance of class-specific tuples. Section 5.3 will describe the tuple search

algorithm. Section 5.4 will explain the objective function and its formulation.

Experimental outcomes will be presented in Section 5.5.

5.2 Class-Specific Tuples
This research was aimed to find an optimal set of input connections for the n-tuple

classifier to achieve higher recognition rates. The performance o f each connectivity
81

pattern during search will be evaluated by a reward and punishment technique that

will be explained in Section 5.4. Finding an input map that gives high scores for all

classes will be extremely rare because there will be similar classes in the system and

the overlapping region between similar classes will cause the discrimination task

much harder. So there will be classes in the dataset which will be difficult to

recognise and give low recognition rates. These classes can be termed as “critical”

classes. One strategy to improve the discriminating power for a critical class would

be to optimise or tune a sufficient number of tuples only for that class such that each

tuple in that group can give high score for that class. Eventually all of these tuples

when work together will try to improve the recognition rate for that critical class. This

group of tuples tuned to a specific class is known as class-specific tuples.

5.3 Tuple Search Algorithm
A stochastic search algorithm was developed to find an optimum set of input

connections to the n-tuple network. The unique strategy in the search algorithm was

to reserve more tuples to a more critical class group (Section 5.2). The classes with

high error rates were termed as critical classes. By using more class-specific tuples

for a critical class the search algorithm would allow more time to be given to find

features for a critical class. Before the search starts the total available tuples (R) was

distributed among classes proportionately to the error rates. To calculate the number

o f class-specific tuples for a class at first the error rate o f that class was divided by the

total error rate and then the result of the division was multiplied with the total

available tuples (R). The result of the multiplication was rounded to the nearest

integer. No normalisation was used in the calculation of class-specific tuples.

Providing more tuples to a class with a high error rate ensures that the extra care has

been taken for a critical class group. Tuples engaged to a specific class best learn the

features of that class and also learn some features for other classes to an extent. Thus

82

a class-specific tuple can give scores for both its specific class and other classes when

the performance of the tuple is evaluated by an objective function (Section 5.4). But it

should recognise its specific class better than other classes. The pseudo code of the

search algorithm is presented in Figure 5.1.

LET j = 0;//class index

Tf = 0;//number of successful tuples in any
iterat ion

p'j = number of tuples responsible to best
describe class Cj ;

REPEAT

GENERATE ([Q-Tf] set of tuples randomly);

FIND SCORE (Q set of tuples based on class Cj);

RANK (Q set of tuples based on their scores);

CARRY (Tf set of successful tuples to next

iteration);

IF (Tf = p'j)

THEN {

SAVE(p'j set of tuples as mature tuples);

SET (j = j + 1, Tf = 0);}

UNTIL (j < number of classes);

F igure 5.1 P seu d o-cod e o f R nP based search

83

To understand the search algorithm consider a class index j to identify a class

‘C /. Let us consider an objective function (Section 5.4) that gives scores for

class-specific tuples. Let’s say Q is the total number o f tuples in any iteration. The

target is to find R number of class-specific tuples in total. The distribution of R tuples

among the classes is proportionate to the error rates. The more the class is critical, the

greater number of tuples it gets.

Let us assume p j is the number of tuples that will be matured for class Q.

Thus the summation of all p ’j (Z p’j) will be equal to R. Every iteration scores for Q

sets of tuples are evaluated according to the objective function based on Q. So the

RnP based objective function will give the scores only for the class Cj. Then Q sets of

tuples are ranked based on their scores for the class Cj. The number of tuples, say Tf,

whose scores are higher than a predefined threshold are treated as the successful

tuples for a certain iteration and they are being carried to the next iteration by virtue

o f their good scores. So in the next iteration only Q -Tf tuples will be created

randomly. Before moving to the next iteration a check has to be made if the number

o f successful tuples (Tf) have met the number o f class-specific tuples (p ’j) in the

class Cj. If T f = p j , then the mappings for these successful tuples will be saved and

these tuples will be treated as the matured tuples those are specific for the class Cj.

The whole process repeats until all matured class-specific tuples (Z p ’j = R) for all

classes have been sought and later these matured tuples will be used for the final

recognition task.

5.3.1 Flow Chart of Tuple Search Algorithm

Figure 5.2 and Figure 5.3 show the tuple search algorithm in a flow chart. The

algorithm started by creating Q number o f tuples randomly. The randomness in

selection ensures that the tuples are mapped all over the input matrix. Now

performance o f all tuples will be evaluated against an objective function. Based on

84

F igure 5.2 F low chart (P a r ti) o f R nP based T uple search algorithm

85

F igu re 5.3 F low chart (P art2) o f R nP based T uple search algorithm

86

the score given by each tuple, all the tuples will be ordered from high to low and then

compared against a predefined threshold function. Tuples whose score are higher than

the threshold will be successful (Tf) to go to the next iteration. At the end of each

iteration the successful tuples will be counted and if the number is less than the

required then the tuples those were not successful (score less than the threshold) will

be remapped randomly to be evaluated in the next iteration. Performance of all tuples

will be again measured against the objective function and all the steps will be

repeated until required numbers o f tuples are sought for a specific class. The steps

will be repeated for other classes too until class specific tuples for all classes are

found.

5.4 Reward and Punishment Based Performance Measure
A trained classifier can either recognize or misclassify or reject a test pattern. In the

reward and punishment (RnP) scheme [SimSes, 2000] a reward is associated with the

correct recognition of the pattern and the penalties for misclassification and rejection.

It takes account misclassification and rejection while measuring performance, where

as standard error rates based cost function [e.g. CV error rate in Jorgensen et al.,

1995] ignores the difference between misclassification and rejection. Rejection will

be less damaging than misclassification [Maltoni et al., 2003]. The reward and

punishment concept has been used before in both weighted and weightless neural

networks. In reinforcement learning [Sutton and Barto, 1998] actions are associated

with rewards and punishment for ‘good’ and ‘bad’ behaviours [Ackley and Littman,

1991]. [Aleksander, 1989] used a reward and punishment algorithm in an extended n-

tuple model called ‘probabilistic logic node’ (PLN) [Penny and Stonham, 1990]. In

addition to storing 0 or 1, a PLN memory location could be in a 'u' state, in which it

was equally likely to output 0 or 1 when addressed. All locations are initially set to

‘u’ (in PLN 1 means ‘Yes’ pattern is for that class, 0 means ‘N o’ pattern is not for

87

that class as that pattern is counter example of that class, ‘u ’ means ‘don’t know’).

After one o f the training patterns is presented to the net if the output matches the

desired output all the addressed locations are made to assume their current output

(0/1) (Reward). In case the output the PLN network mismatches the desired output all

the addressed locations are made to assume the “u” value (Penalty). This way the

training continues until all training patterns are presented at the input. RnP algorithm

described in this thesis doesn’t alter the memory values; rather it measures the

performance of a trained tuple on the validation dataset. For this the whole pattern

data are divided into three parts: training set, evaluation set and test set. Let us

consider S/ is the total number o f samples for training the classifier, Se is the number

o f samples available for evaluation purpose and St denotes the number of samples in

the test data set. If S is the total number o f available samples then S = Si + Se + S,.

Now for optimisation purpose the network is trained with S/ and evaluated with Se

dataset. For the final recognition task both the Si and Se are used for training the

network and S, is used for testing. Finally, the dataset Se can be considered to have

three parts: Sq, Srj and Smj. Sq is the number o f Cj samples correctly recognized, Srj is

the number of C, samples rejected and Smj denotes the number of Cj samples

misclassified. Considering all these definitions the objective function for class Cj,

denoted as Oji, will be evaluated by the following equation:

O n = Scj xPc + Srj X Pr + Smj X Pm (5.1)

Where Pc= Positive points associated with reward for recognition; Pm=

Negative points for misclassification; Pr= Negative points for rejection; i= population

index which varies from 1 to Q;j= class index.

The point scheme for the objective function will be explained in the next

section. As explained in the previous section, in every iteration the search algorithm

selects the number o f tuples as the successful tuples according to a threshold.

88

Consequently a threshold function was developed for the system, which is shown in

(5.2):

Threshold = max[o jj (t))x (/ - k (t)) (5.2)

ii "r
'

(5.3)

Time -------------►

Figure 5.4 Exponential decay of threshold function

In (5.2) m ax\0n(t)) is the score o f the best-performed tuple among all the

tuples in the current iteration. The value of k sets a percentage o f m ax(o -(/)) which

is the minimum score a tuple has to have to become successful in the current

iteration. To accelerate searching, k can be varied over time according to (5.3). Both

max (<9,,.(/)) and k are time dependent. The same value o f max(ofl (/)) may sustain for

several iterations but the k will change in every iteration. Figure 5.4 illustrates a

89

fictitious search scenario where there are three time intervals: T l, T2 and T3. In the

example m ax(p/t (/“)) has different values increased in three stages. In every stage

“Threshold” exponentially decreases according to the equation (5.2) and (5.3)

where z should be chosen suitably to set the exponential decay o f the threshold over

iterations. An equation similar to (5.2) was used in the simulated annealing algorithm

[Bishop et al., 1990], where initially large random jumps across the search were

allowed and then the size of the possible jumps was reduced exponentially. Thus in

SA the use of decay equation (5.2) allows the whole search space to be probed at the

very initial stage, so as to find the general area of the optimum position. Like any

other stochastic search, the RnP based search will produce better results if more time

is spent on searching. So the value o f z should be carefully chosen and varied

throughout the search as a trade-off between the performance and the speed.

5.4.1 Point Scheme for RnP

The point scheme determines what values should be set for Pc, Pm and Pr in (5.1). In

general a rejection is thought to be more favourable than a misclassification. It is

equivalent to the system getting confused rather than making the wrong decision. To

find out what should be the point to set for the reward consider a point for

misclassification as Pm = -1 . If J is the criterion deciding minimum number of

samples of the class Cj that must be recognized by one individual tuple to maintain a

predefined minimum score, say Omin, then the value o f Pc can be found by the

following formulae:

J X Sc, X Pc + Pm X Sej(l ~ J) = Omin (5.4)

In the above formulae Sej is the number of samples available to evaluate a

specific class j . Sej is the part of the evaluation data set Se, where Se = ^ Sej . J in
j

90

(5.4) is a value in percentage and Omin is a pre-set minimum score. If Omin is set to

500, J= 5%, Sej =500 and P„,=-1; then Pc comes out as 39. So rewarding points should

be 39 for a recognition of a pattern when Pm=-1. As rejection is more favourable than

misclassification P, can be set empirically as -0.5. J= 5% indicates that the pattern is

so complex that even when the least 5% of the samples o f the evaluation data set is

recognized by a single tuple, the evaluation function will give a minimum score of

500. A tuple with larger tuple-size has the more ability [Section 3.3.1] to recognize

patterns. So for a larger tuple-size higher percentage of J can be chosen. It is more

convenient to choose a lower value in J ,, as it works for both larger and smaller tuple-

sizes.

5.5 Evaluation of RnP Optimisation
The proposed stochastic search method was applied to recognize handwritten

characters from the NIST database. The partition hsf_{0} (Section 4.2.1) of the

Special Database 3 was used for training and the partition hsf_{4} (Section 4.2.1)

from the Special Database 7 [Wilkinson, 1992] was used for testing. NIST

recommends using images of hsf_{4} for testing as they are more difficult from other

partitions and this ensures the heterogeneity between the training and testing set (see

analysis in [Wilkinson et al., 1992]), a fact which is reflected in the results. The

numeric data set consisting only the digits (0,1...9) was used for the experiments.

Each character is a binary image with the dimension 32 by 32. All digits are scaled

into same dimension and centred. In the partition hsf_{0} there are 1000 images per

class for training and in the partition hsf_{4} there are 1000 images per class for

testing. For the experiments the total train samples were again divided into two halves

by the holdout method [Hand, 1986] and one part (Si) was used to train the network in

the evaluation phase and other part (1S'e) to evaluate the RnP based objective function.

91

re
co

gn
iti

on
 r

at
e

(%
)

After finding the mature tuples, all training images (S/ + Se) o f hsf_{0} were used to

train the classifier and the images from hsf_{4} were used to test.

100 -,

90

classes

Figure 5.5 Class-wise comparison of recognition rates

Table 5.1 Distribution of Class-specific tuples among various classes

Class 0 1 2 3 4 5 6 7 8 9

Error
rates 2.9 54.8 7.6 9 13.25 31.5 10.1 31.9 13.7 19.25

Class-

specific P ' 0 = p ' l = p ' 2 = p ' 3 = P ' 4 = p ' 5 = P'6= P ' 7 = P ' 8 = P ' 9 =

tuples 2 42 6 7 10 24 8 25 11 15

92

T able 5.2. E xperim en tal Settings for R nP O ptim isation

Parameters Values

Time constant (5.3), r 100

Constant (5.4), J 5%

Point for misclassification, P,„ -0.5

Point for rejection, Pr -1

Point for reward, Pc 39

Population size, Q 200

Total train images (Si + Se) 10,000

Total test image , St 10,000

Images per class to evaluate, Sej 500

Table 5.3 Improved overall recognition rate by RnP based optimisation

Average Best
Methods Recognition Recognition

Rate (%) Rate (%)
Conventional randomly selected n- 80.93 82.83

tuple (in 2000

[Bledsoe and Browning, 1959] runs)

RnP Based 83.67 84.5

Stochastic approach (in 10 runs)

Two experiments were performed. The first one was to demonstrate how the

recognition could be improved for a class when all the tuples in the network are tuned

only for that particular class. In total 140 tuples were used for the network with the

tuple-size of 8 bits. The number 140 was chosen empirically but it satisfies the

relation R > L/n (in Section 3.3) for a 32 by 32 binary image. The results are shown

93

in the Figure 5.5. It can be seen that character 1 is the most critical class to be

recognized in the NIST database. For the random case the recognition of class 1 was

45.26, which was the mean of 2000 runs. The RnP based optimisation improves the

recognition o f class 1 by 19.66% (Figure 5.5). It improves the recognition rate for

class 5 by 15.56%, class 7 by 11.02% and all other classes by several percentages.

The recognition rates found by RnP based search correspond to the mean of ten runs.

The second experiment was required to demonstrate the improvement of the

overall recognition rate by the stochastic search method. The overall rate was the

average o f all recognition rates of all classes. The total number o f tuples for the

experiment was 150 with the tuple-size 8 bits. Tuples were distributed among classes

proportionately to the error rates of the classes. Table 5.1 reports the error rates of ten

classes from character 0 to 9. It also presents the number of class specific tuples for

each class. The method of calculating class-specific tuples was described in Section

5.3. Being the most critical class, character 1 gets 42 tuples out of 150. The randomly

selected network was run for long enough (2000 iterations) to give it a chance to find

better input maps that could be comparable with the maps found by the stochastic

search. The best overall recognition rate by the random network was found to be

82.83% and the average rate was 80.93%. In case of stochastic optimisation (Table

5.2), the average overall recognition was 83.67%, which was 2.74% superior to the

random case proposed by [Bledsoe and Browning, 1959], The results were obtained

with the code running under Windows XP on a 2 GHz Pentium 4 machine.

5.5.1 Students t-test results between RnP and basic n-tuple

The Student’s t-test (Section 4.4.1) assesses whether the average recognition rates by

any two algorithms, say X and Y, are statistically different from each other. The null

hypothesis for the test was ““average recognition rate by the RnP (X) is higher than

conventional random selection (7)”. The degree of freedom (Section 4.4) for the test

94

was 18 as each algorithm was run for 10 trials. In the t-test, a t-value was calculated

against the null hypothesis and compared with the tabulated values at different

confidence levels with 18 degrees o f freedom. By convention [Deacon, 2006], we say

that a difference between means at the 95% confidence level is "significant", a

difference at 99% level is "highly significant" and a difference at 99.9% level is "very

highly significant". Tabulated t-values for 95%, 99% and 99.9% at 18 degrees of

freedom were found to be respectively 2.10, 2.88, and 3.92. So if the calculated t-

value exceeds the tabulated t-value of 3.92 it can be claimed that the difference in

recognition rates between the RnP and random selection approaches was statistically

“very highly significant”. The calculated p-value indicates the probability of

observing the result by chance, given that the null hypothesis is true. Small values of

probabilities cast doubt on the validity of the null hypothesis. The p-value between

the RnP and random selection approach was 1, which indicates that the null

hypothesis “average recognition rate by the RnP (X) is higher than random selection

approach (T)” is extremely valid. The calculated t-value (texp in Section 4.4.1) for the

null hypothesis was 7.98 and it exceeded the tabulated value (6/, in Section 4.4.1) of

3.92 at the 99.9% confidence. The result indicates that the increase in recognition rate

by RnP based approach over traditional n-tuple method is statistically “very highly

significant”.

Figure 5.6 displays the side-by-side box plots of RnP and random selection

process. Box plots (Section 4.5) are an excellent tool for conveying location and

variation information in data sets, particularly for detecting and illustrating location

and variation changes between different groups of data. In the experiment data

samples o f a particular algorithm were recognition rates observed from the ten trials

o f that algorithm. Thus each box in Figure 5.6 was constructed with the recognition

rates of ten trials. The notches in the figure are drawn about the median so that,

notches which don't overlap represent significant differences between medians (with

95

95% confidence). In Figure 5.6 the RnP clearly exhibits a significantly higher median

than the conventional random selection. Box plots also show if there are unusual

observations (outliers) in the dataset. One unusual observation was plotted for the

random selection.

Figure 5.6 Box Plot of RnP and Random selection

5.6 Summary
This chapter presented the implementation of a new stochastic search strategy in

finding an optimal set o f n-tuples. The uniqueness in the algorithm was to distribute

the total available tuples among the classes according to the error rates. Thus a

96

difficult class gets more attention by the algorithm. The RnP method spent more time

in finding features of a difficult class than an easily recognisable class. The optimised

network was tested on a handprinted database. Results showed an improvement of

2.74% in recognition rate by the RnP based approach over the conventional randomly

selected method. The improvement was statistically very highly significant. This

chapter is a good reference to realize the underlying methodology of the RnP based

stochastic process for the n-tuple classifier. The proposed RnP method improved the

recognition success at some small cost to the training speed. The high speed of the

basic n-tuple network makes it entirely practical to carry out the pre-processing task

of selecting input maps to find the suitable ones.

97

Chapter 6

Particle Swarm to Optimise n-tuples

6.1 Introduction
This chapter will investigate the implementation o f the PSO on the n-tuple network to

optimise the input connection mappings. Among different optimisation techniques the

Particle Swarm Optimisation [Kennedy and Eberhart, 1995] exhibits good

performance in finding solutions to static optimisation problems [Parsopoulos et al.,

2001a; Parsopoulos and Vrahatis, 2001b]. Being successfully applied in many areas

like function optimisation, artificial neural network training [Parsopoulos and

Vrahatis, 2001b; Settles and Rylander, 2002] or fuzzy system control [Esmin et al.,

2002], the PSO seems to be a good candidate to find optimal set o f input maps for the

n-tuple network. This chapter will describe how the particle swarm can be applied on

the n-tuple network. Learning strategy of the n-tuple network by PSO will be

explained. Different parameter settings of the PSO will be reported in Section 6.6.

Section 6.7 will give the results of the experiments by the particle swarm optimised

network. Genetic Algorithm will be applied on n-tuples to compare against the PSO.

Performances, similarities and differences between the PSO and GA will be discussed

in Section 6.8.

98

6.2 Particle Swarm on n-tuples
When the particle swarm is applied on the n-tuple, the “tuples” of the n-tuple can be

termed as “particles”. Thus each particle corresponds to an input connection map of

the n-tuple network. The size of an n-tuple network is defined by the total number of

tuples it is built with. Total number o f tuples, denoted by R, is the number of tuples

available to be optimised by particle swarm. R depends on the network’s structure.

The particle swarm technique makes use o f a population of particles or input-maps

(for n-tuples), where each particle has a position, a velocity. The PSO formulae, as

shown in equation (2.1) and (2.2) define each particle as a potential solution in a

multi-dimensional search space.

The dimension of the PSO corresponds to the bits or the tuple-size (Section

3.3) of each tuple. As the tuples are bits, so the PSO will be n dimensional with

the z'-th particle represented as Xf=(Xii,Xi2,--Xin). The PSO remembers the best position

found by any particle which is known as global best, denoted by Pg. Additionally

each particle remembers its own previously best found position designated as

Pi=(Pn,Pi2> ■■■Pin) and its velocity V,= (Vl!t Vi2,... Vin). Equation (2.1) and (2.2) will

define the velocity and position of the z-th particle with r/-th dimension. For example

for the particle with index 1 and dimension 3 the equations will be:

V i,3 (t + 1) = co x V 1,3 (t) + y/ \ x ran l x (P i,3 - X 1,3(0) (6.1)

+ y/2 x ran 2 x (P g3 - X 1,3(0)

X 1,3{t + 1) = X 1,3(0 + V 1,3(t + 1) (6.2)

The PSO starts with a population of randomly generated particles (say Q) and

detects the optimal solution through co-operation and competition among the

individuals of the population. Every iteration a particle evaluates its position relative

99

to a goal or fitness. The velocity of each particle is updated by being pulled in the

direction of its own previous best position and the best o f all positions reached by all

particles so far. Constants y/land y/l in (6.1) determine the relative influence of the

“individuality” and “sociality” traits of the particles and are usually both set the same

to give each component equal weight as the individual and social learning rate. The

constant co is the inertia weight described by [Shi and Eberhart, 1998a]. The ‘ra n i’

and Van2’ are realizations of uniformly distributed random variables in {0, 1}.

6.3 Fitness Measure in PSO
The quality o f particles is measured using a fitness function that reflects the

optimality of a particular solution. The selection of fitness function depends on the

problem types. For a classification problem, the rate o f misclassified patterns can be

viewed as the fitness value. The equation (5 .1) described in the previous chapter was

point-based function that incorporated a reward (positive points) for correct

recognition o f the pattern and the penalties (negative points) for misclassification and

rejection. For consistency the fitness function is the same as for RnP optimisation

described in Section 5.4. The position with the highest fitness value in the entire run

is called the global best, Pg. Each particle also keeps track o f its highest fitness value.

The location o f this value is called its personal best. If any fitness is greater than the

global best, then the new position becomes Pg and the velocities are accelerated

toward that point. If a particle’s fitness value is greater than its personal best, then

‘personal best’ is replaced by the current position and the particle is accelerated

toward that position. Another point called the local best (Ibest) is sometimes used. This

is the position o f the highest value from a small group o f particles. The size of the

group is usually about 15% of the population size. Particles are accelerated toward

Ibesi from their respective group. This technique, however, was not used in this

research.

100

Figure 6.1 Influence of global best and particle’s own best

Time -------------►

Figure 6.2 More particles above threshold as the time goes

101

Figure 6.1 shows how a particle’s current position, X/t), is influenced by that

particle’s previously found best position ,Pi} and best position of all particles (Pg).

The dotted circles in the figure illustrate the influence o f global best and particles

own best. Particles current position is changed towards both Pj and Pg to account that

influence. Fitness function that identifies Pg and P, was described in Section 5.4. The

same exponential threshold function (5.2) was used to set a decaying boundary in

accepting solutions during search. A solution, which has a score above the threshold,

will be considered as an acceptable solution.

Figure 6.2 shows fictitious case where white particles are the unsuccessful

particles and the black ones are the particles whose fitness values are higher than the

threshold value. In the figure there are three time intervals and it shows how fitness

threshold exponentially decays in each time interval based on equation (5.2) and

(5.3). As the time goes the threshold decays and this allow more black particles to

come above threshold.

6.4 Learning Scheme by PSO
The learning scheme basically selects better n-tuples in an iterative manner. At each

iteration particles with the fitness near to the maximum value, defined by the particle

which is at the global best position, are kept. The definition of what is "near" is

gradually tightened with iterations as the particles “flying” through the multi

dimensional search space. The particle swarm searches optima in the solution space

and shrinks the search area step by step. It refines its search by attracting the particles

to positions with good solutions. Like before (Section 5.3) the total available tuples

(R) were distributed among classes proportionately to the error rates [Azhar and

Dimond, 2004a], Thus different classes had different number of class-specific

particles. For this, each class has its own PSO to find the required number o f class-

specific particles. Pseudo code for the PSO based learning strategy is given below:

102

LET j= 0; //class index

W= Width of a binary image;

H=Height of a binary image;

Q= Population size;

i = particle index; // varies from 1 to Q

R=Total number of available tuples to be optimised;

//depends on network structure

Xi,d=Particle' s current position;

Pi,d= Particle's previously best found position;

Pgd= Global best; //best position visited so far by

any particle

Pf = 0; //set of particles defined by particles

//best positions so far and whose fitness

//values are higher than a threshold

p'j = number of tuples responsible to best describe

class Cj;// E p 'j=R

REPEAT

WHILE (Pf < p'j)

{RUN PSO {

For i=l to the population size Q,

For d=l to the problem dimensionality n,

103

Apply velocity update equation,(2.1)

Limit magnitude of velocity (2.5)

Update Position by applying equation (2.2)

Limit position applying equation (2.6),

where Xmax= WxH and Xmin=l,

End-for-d;

Compute fitness of Xi;d(t + 1) based on class C j , -

If needed, update historical information

regarding Piid and Pgd;

End-for-i;}

RANK (All "Pi"s based on their fitness values);

FIND (Pf);}

SAVE (p'j set of particles as "mature" particles);

SET (j = j + 1, Pf = 0) ;

UNTIL (j < number of classes);

To understand the learning scheme, consider a class index j to identify a class

‘C /. The fitness function is described by (5.1) which gives scores for class-specific

particles. Let’s say Q is the total number of particles (population size) in any

iteration. The target is to find R number o f class-specific tuples in total. The

distribution of R tuples among the classes is proportionate to the error rates. Let us

assume p 'j is the number o f tuples that will be matured or optimised only for the class

104

Cj. Thus the summation of all p 'j (Tpy) will be equal to R. Pi is defined as the

particle’s previously best found position so far. At the end of each iteration, all

particles defined by their best positions (P,) are ranked based on their scores for the

class Cj. Among these ranked particles P f numbers o f particles have scores higher

than a predefined threshold (5.2). Before moving to the next iteration a check has to

be made if P f has met the number o f class-specific tuples (p 'j) in the class group Cj. If

not, the PSO will be run to generate a new set of particles for the next iteration. If P f

= p'j, then the mappings for these successful particles will be saved and these

particles will be treated as the matured tuples those are specific for the class Q. The

whole process repeats until all matured class-specific tuples (Zp'j = R) for all classes

have been sought and later these matured tuples will be used for the final recognition

task.

6.4.1 Flow Chart of the PSO based Tuple Search

Tuple search algorithm that we explained in the previous section is being illustrated

in the flow chart in Figure 6.3 and Figure 6.4. The algorithm starts with the Q

particles, initially randomly created. The Q particles are distributed randomly over the

whole pattern matrix. Next the fitness of each particle is measured according to the

fitness equation (5.1).

Based on fitness results each particle’s best positional values are updated.

iPi,d defines the location along the dimension d of the best positional value of each

particle in the history. So ‘/V s represent best positions of all particles so far. Next in

the flow chart fitness o f all P, particles will be compared with a fitness threshold

defined by equation (5.2).

105

Figure 6.3 Flow Chart (Parti) of the PSO based search algorithm

106

Figure 6.4 Flow Chart (Part2) of PSO based search algorithm

107

Particles whose fitness will be equal or higher than the threshold will be

defined as the optimised particles for the current iteration. As the threshold varies

from iteration to iteration, particles those are found as optimised in the current

iteration may not be found as optimised in the next iteration. Next in the flow chart

the algorithm checks if the total number o f particles for a class has been found or not.

If not found then the particles velocities and positions will be updated to explore new

locations in the search space. After finding all optimised particles for a class the index

of the class will be increased and tuples for the next class will be sought. At the

beginning o f searching for the next class a new population o f Q particles will be

created randomly over the input pattern matrix. Once all the particles are sought for

all classes the optimisation task will be completed and an optimal set of R maps will

be found. These R maps will be used as input connection maps o f the n-tuple network

to recognize characters.

6.5 Parameter Settings
Particle Swarm Optimisation has certain parameters that require tuning to work well.

This is also the case with other stochastic search algorithms e.g. for the tuning of GA

mutation rates. No optimal parameter setting applies to all problems and tuning these

parameter settings can result large performance variances. This problem is magnified

in PSO where modifying a PSO parameter may result in a proportionally large effect

[Lovberg, 2002], For example, increasing the value of the inertia weight, co, will

increase the speed of the particles resulting in more exploration (global search) and

less exploitation (local search). On the other hand, decreasing the value of co will

decrease the speed of the particle resulting in more exploitation and less exploration.

Thus finding the best value for co is not an easy task and it may differ from one

problem to another. Some parameters are crucial and some could be optional.

‘MAXITERATIONS’ is an optional parameter which sets a limit on the number of

iterations to be executed before terminating a search. ‘THRESHOLD’ sets the
108

acceptable error level. A solution falling within THRESHOLD distance of a specified

value would be considered an acceptable solution and the search would be

terminated. The problem presented in this thesis was to optimise input connection

maps of an n-tuple network by the PSO algorithm. The network was built out of 150

tuples with tuple-size 8. So the problem was 8 dimensional with f?=150. For a 32 by

32 binary image (character) the image resolution was 1024 bits (3.1). When PSO was

applied to search optimal set o f connections for a specific class group, the values and

choices of some PSO parameters were found to be very crucial. Following sections

will discuss the chosen values o f some of the important parameters.

6.5.1 Swarm size

Swarm size depends on the swarm termination criteria. If PSO stops after a fixed

number o f iterations, a choice has to be made, either choosing a larger swarm or

having more iterations [Van den Bergh and Engelbrecht, 2001], For the problem in

this research the termination criteria was not based on iterations. The goal was to find

a fixed number of particles whose fitness values were higher than a predefined

threshold value. Thus the proposed PSO can stop at any iteration as soon as it finds

the required number o f matured class-specific particles (p 'j in Section 6.5). Imagine

the case where there are only few class-specific tuples to be found. Because o f fewer

numbers o f tuples the PSO might terminate in few iterations and due to this early

termination there is a high possibility that the whole swarm might stuck in a local

minimum. For a binary image of 32 by 32 dimension the size of the input vector,

denoted by L, is 1024 (Section 3.3). Now for an 8 dimensional problem (n=8) to have

more possibility that the swarm can pass over the entire input vector o f 1024 bits even

in a few iterations a suitable population size would be 200 (Q). In most o f the

experiments presented in this thesis the population size of 200 was used. A

population size o f 1000 was also tested but it showed a very slowly convergent

system without any noticeable difference in performance.

109

6.5.2 Swarm Velocity

Due to the tendency for some particles to experience explosive growth in velocity, a

Fmax can be introduced which is an arbitrary cap placed on the magnitude of any

particle’s velocity. Vmax is the step size o f the swarm, the maximum distance a particle

can travel in an iteration. Results in [Lovbjerg, 2002] show that in general performance

improves as Fmax shrinks. It was necessary to clamp the velocity of a particle to the

range {-Vmax, Vmax} to prevent the PSO from leaving the search space. The value of

Vmax proved to be crucial, because large values could result in particles moving past

good solutions and create excessive crowding or bumping around the best fit particle.

Higher bumping could result in forming similar particles that would obstruct the

exploration o f new features in an image, causing premature convergence [Eberhart et

al., 1996]. In the experiments the Vmax of 2 was observed to be a good value to fine-

tune the entire search space with 200 particles. Setting the value of Vmax to 40

returned poor recognition rates and this will be shown in an experiment in a later

section.

6.5.3 Inertia Weight

The inertia weight is employed to control the impact o f the previous history of

velocities on the current velocity. In this way, the parameter «regulates the trade-off

between the global (wide-ranging) and local (nearby) exploration abilities of the

swarm. A large inertia weight facilitates global exploration (searching new areas),

while a small one tends to facilitate local exploration, i.e. fine-tuning the current

search area. A suitable value for the inertia weight «usually provides balance

between global and local exploration abilities and consequently a reduction on the

number of iterations required to locate the optimum solution. In 1998 Shi and

Eberhart investigated modifications [Shi and Eberhart, 1998b] to PSO to improve the

algorithm’s local search characteristics. In a modified PSO they introduce«, their

110

inertia factor, to dampen the velocities of the particles. Although they discuss <yas

being implemented in both constant and time dependent variations, the latter, as a

linear decreasing function of time, showed the most promise. Thus a time decreasing

inertia weight value can be a good choice as used by [Lovbjerg and Krink, 2002]

where inertia parameter was decremented linearly with number of iterations from 0.7

to 0.4. As the PSO presented in this thesis could terminate at any iteration, the inertia

parameter was chosen to be a constant value o f 0.7.

6.5.4 Cognitive and Social Parameter

The cognitive (^1) and social (i//2) parameters are not critical for PSO’s

convergence. Dropping the social component from equation (6.1) results in the

Cognition-Only Model (2.3), whereas dropping the cognition component defines the

Social-Only Model (2.4). In [Kennedy, 1998], Kennedy asserts that the sum of the

values o f the cognitive and social components o f the PSO {y/\ and y/2) should be

about 4.0, and common usage is to set them each 2.05 each. However, in an earlier

work [Kennedy, 1997], Kennedy also looked at models where the two components

had varying values, specifically, zero for the social component (cognition-only

model), zero for the cognitive component (social-only model), and setting the two

equal (full model). In that work, he found a performance advantage to the social-only

model. Typically both the cognitive and social parameters are set to a value of 2

[Eberhart et ah, 1996], although assigning different values sometimes leads to

improved performance [Suganthan, 1999]. In most o f the experiments presented in

this thesis both the values were set to 1. Setting the values to 2 made no noticeable

difference.

6.6 Overall recognition rates by PSO
The particle swarm was applied to optimise the input connection maps of the n-tuple

classifier. The network was built out of 150 tuples with the tuple-size 8. The task was
111

to recognize handwritten characters from the NIST database. The numeric data set

consists o f digits was used for the experiments. Each character was a binary image

with the dimension 32 by 32. The target of each optimisation method was to find 150

input maps or tuples with reasonably high fitness values for different classes. 150

maps were distributed among 10 classes according to the difficulty associated with

each class to recognize it. So the most difficult class gets the highest number of tuples

to be optimised. The strategy was to distribute the total available tuples (R=150)

among classes proportionately to the error rates. The overall recognition rates, the

average o f all recognition rates o f all classes, were sought. The overall recognition

rate by PSO was compared with the RnP and randomly selected approaches described

in the previous chapter. The rates found by all approaches were mean o f ten runs. The

best recognition rate by any algorithm in ten runs was also recorded. All training

methods are listed in the Table 6.1. The first training approach in the table, which is

the random selection process of tuples, is the conventional way of training an n-tuple

network. The second approach shown in the table is the hill climbing type stochastic

process as described in [Azhar and Dimond, 2004a], Results corresponding to the

pure particle swarm based training are listed in indexes 3 and 4 of Table 6.1. The

PSO had no neighbourhood restriction, meaning that each particle can affect all other

particles. Swarm velocity also plays important role. In the experiments the Vrnax o f 2

was observed to be a good value to fine-tune the entire search space with 200

particles. Setting the value of Vmax to 40 returned poor recognition rates as shown in

indexes 4 of Table 6.1.

The best-performed PSO (index 3 of Table 6.1) was compared against a

second algorithm from Table 6.1 and results were tabulated in Table 6.2. The null

hypothesis for the test was “average recognition rate by the PSO (X) is higher than

any second algorithm (T)”. Degrees o f freedom (Section 4.4) for the test were 18 as

10 runs for each algorithm was used. In the t-test (Section 4.4.1), a t-value was

112

T able 6.1 R ecogn ition rates o f n -tuple netw orks w ith O ptim ised T uples

Index
Training algorithm for n-tuple

network
Total available tuples, R=150 and

tuple-size, n=8

Average

Recognition

Rate (%)

Best
Recognition

Rate (%),
in 10 runs

1 Conventional random selection

approach [Bledsoe and Browning,

1959]

80.93 82.83

2 RnP based stochastic approach

[Azhar and Dimond, 2004a]

83.67 84.50

3 PSO 0 1 = 1 , i//2=l,Vmax=2,

co =0.7,0=200)

84.82 85.35

4 PSO {y/\=l, y/2 —1, Vmax =40,

co =0.7,0=200)

82.78 83.76

Table 6.2 Results of Student’s t-test between PSO (X) and a second algorithm(T)

Index from

Table 6.1
Algorithm Y

texp"

value
p-value

1 Conventional random selection approach 14.87 1.00

2 RnP based stochastic approach 5.06 1.00

4 PSO {y/\=\, y/2 =1, Vmax =40,

co =0.7,0=200)

9.08 1.00

113

calculated against the null hypothesis and compared with the tabulated values at

difference confidence levels [Kreyszig, 1970] with 18 degrees of freedom. To

understand the significance of the result the t-values in Table 6.2 have to be looked at.

The values show that the increases in recognition rates by the PSO (index 3 in Table

6.1) over the conventional random selection, the RnP based stochastic approach and

the version of the PSO with a high Vmax (index 4 in Table 6.1) are statistically “very

highly significant” as the observed t-values for all of these cases were greater than

3.92 (tth). The p-value in Table 6.2 indicates the probability o f observing the result by

chance, given that the null hypothesis is true. Small values of probabilities cast doubt

on the validity of the null hypothesis. The p-values in Table 6.2 for all the cases were

1, which indicates that the null hypothesis “average recognition rate by the PSO (X) is

higher than any second algorithm (Y)” is extremely valid.

Figure 6.5 Box Plots of PSO, RnP and Random selection
114

The above figure visually compares the samples o f recognition rates observed

by applying three different approaches. The median of a distribution is shown as a

line across the box in the figure. The median o f recognition rates for PSO can be

noted from the figure as near 85%, for RnP near 84% and for randomly selected

approach near 81%. Clearly the distribution of results for PSO is clustered in the area

with reasonably higher values of recognition rates and it shows better performance

than the other two. The box plot of PSO also shows an unusual observation or outlier

likewise the random selection approach.

6.7 Comparing PSO with GA
Results in the previous section showed how Particle Swarm (PS) could successfully

find an optimal set o f input maps. Like swarm intelligence the Genetic Algorithm is

also a population based search technique and seems to be a good candidate to find

input maps for n-tuples. GA has proven to be accomplishing the same goal as the PS

optimisation [Kennedy and Spears, 1998], It is also important to investigate the

similarities and differences between the two algorithms for optimising n-tuple

network. To do this task the GA will be applied to search for better maps of n-tuples

for recognizing binary handwritten characters. Exactly same experimental set-up

(Section 6.6) will be used for GA as it was used for the PSO, only difference will be

the search algorithm. GA based tuple selection technique will be explained in the next

section. Later this algorithm will be used to find the recognition rates for handwritten

characters and it will be compared against the rates for the PSO. The foundations,

differences and relative performance of the GA and the PS based optimisation for n-

tuples will be investigated. Alongside the performances the convergence properties

for both the algorithms will be compared too.

115

6.7.1 GA Based Tuple Selection

Genetic Algorithm introduced by [Holland, 1975] is an adaptive search strategy based

on a highly abstract model of biological evolution to find a possible solution in a

given problem space. It consists of a number of individuals refining their candidate

solutions by interaction and adaptation. The individual is termed as ‘chromosome’.

For an n-tuple network each chromosome corresponds to each input map. If each map

points to “/? ” locations of the input matrix then the chromosome will be formed with

these n location-values called “genes” [Holland, 1975]. While GA is applied to the n-

tuple network, a population of individual input maps is initialised and then evolved

from generation t to generation t + 1 by repeated applications of fitness evaluation,

selection, recombination and mutation.

Table 6.3 GA Operators

Number of fit

tuples or maps or

chromosomes

Number of

parent
chromosomes

Crossover

probability

Mutation

rates

1 1 1 87.5%

2 2 0.5 75%

3 3 0.33 62.5%

4 3 0.33 62.5%

5 or more 4 0.25 50%

Initial population o f maps is generated at random. Every evolutionary step

(generation), the input maps in the current population will be evaluated according to
116

some predefined quality criterion, referred to as the fitness, which is equated with

goodness o f solution. A simple function (5 .1) was used to measure the fitness. It is

important to keep the fitness function simple as this does not eliminate the autonomy

of evolution [Floreano and Mondada, 1996], Any map that has a fitness value greater

than a threshold (5.2) is considered as a fit map or tuple. All fit maps in the current

generation are passed to the next generation without any modification. This helps

passing the goodness of one generation to pass to the next generation. Maps that are

not fit undergo crossover and mutation operation of GA. Before crossover partner

selection is implemented. Selection is the competition among individuals of the

population to become parents of the next generation. The fitter a member of a

population the more likely it is to produce an offspring. Section 2.5.3 explained

different selection techniques.

a gene or
location

Offspring after crossover

(Crossover)

Offspring after mutation

locations are mutated
with random values.

Figure 6.6 Crossover and mutation in Tuples

117

Figure 6.7 Flow Chart (Parti) of the GA based search algorithm

118

Figure 6.8 Flow Chart (Part2) of GA based search algorithm

The partner selection strategy followed for this research was as simple as

choosing the top two, three or four input-maps with high fitness values as the parent

chromosomes. This selection process is known as ‘elitism’ and was described in

119

Section 2.5.3. Elitism requires that the current fittest member (or members) o f the

population is not deleted and survives to the next generation [Tomassini, 1995], How

many chromosomes will be considered as parent chromosome will depend on the

number of fit input maps at the current iteration. A conditional check was made at

partner selection stage. If there were 5 or more fit tuples then the top 4 tuples were

selected as parent tuples. For 3 or 4 fit tuples the number of parent chromosome was

3. For one and two fit tuples the number o f parent chromosomes were one and two

respectively. These numbers are also shown in Table 6.3. Choosing few input-maps

as parent chromosomes instead of only one best chromosome allowed some diversity

to be added in the system. [Eiben et a l, 1994] found that increasing number of parents

improves performance, but only for a certain number of parents and after this

performance decreases. The optimal number of parents depends on the size o f the

search space [Eiben et a l, 1994],

Genetically-inspired operators like crossover and mutation are used to

introduce new individuals into the population [Holland, 1975]. Section 2.5 explains

different mutation and crossover techniques. Mutation keeps genetic diversity in the

population [Back et a l, 1997]. Mutation implements a random change in the value of

one or more genes for introducing new information into the system. For the

experiments presented in this thesis while implementing crossover genes to offspring

was copied from parent’s chromosomes. One of the g-th (g = where n is the

chromosome length used for the n-tuple network) genes o f the parents was selected

randomly to be the g-th gene o f the child. This is known as uniform scanning

crossover. [Eiben et a l , 1995] introduced gene scanning as a reproduction

mechanism that generalizes classical crossovers like uniform crossover and is

applicable to an arbitrary number (two or more) of parents. Crossover probabilities

for different number of parents are listed in Table 6.3. The process o f crossover and

mutation is illustrated in Figure 6.6 where two parent chromosomes are shown. Each

120

chromosome has 8 location-values or genes. An offspring was created by choosing

genes from both parents with a crossover probability o f 0.50. Mutation was realised

by replacing a gene of the new offspring with a randomly selected location-value

from the input matrix. In the figure small black circles show mutated genes. Large

mutation rates with elitist selection turned out to be remarkably superior to that of

traditional GA to obtain the global optimum solution effectively [Shimodaira, 1996].

Mutation rates used by [Gracia, 2004] in three different topologies of n-tuple

networks were 95%, 60% and 75%. A variable mutation rate would theoretically

make use of a high rate to speed up evolution until a certain “fitness level” is

achieved, and then reduce mutation in order to increase the average fitness and

produce a more balanced population [Harvey, 1993]. Mutation rates used for GA are

listed in Table 6.3. For one parent chromosome only mutation (asexual crossover)

was used with very high mutation rate of 87.5%. Mutation rates were reduced from

87.5% to 50% as more parent chromosomes were found. Reduction in values of

mutation rates also enables to find the global optima by performing local search using

good solutions obtained so far [Shimodaira, 1996],

6.7.2 Flow chart of GA on n-tuple system

Figure 6.7 and Figure 6.8 shows the GA based tuple selection algorithm in a flow

chart. The algorithm starts by creating Q number of input maps randomly for a class

Cj , where j is the class index and Q is the population size. The Q maps are evaluated

according to the fitness equation (5.1) and threshold equation (5.2). A number o f fit

tuples, denoted by T f , will emerge from this evaluation. If T f is less than the

required number o f class specific tuples for class C, , then GA operators comes into

play. First T f fit tuples o f the current generation are passed to the next generation

without any change and rest o f the maps (Q-Tf) go through crossover and mutation

operation. Before crossover parent chromosomes are chosen from the fit maps. After

121

mutation all Q maps are evaluated again and previous steps are repeated or loop

through until all optimised maps for all classes are being sought.

6.7.3 Comparing overall recognition rates of GA and PSO

An experiment was conducted to train an n-tuple network by GA and then use that

trained network to recognize handwritten characters (0 to 9) from the NIST database.

To compare the result with previously found results same experimental set-up was

used as it was used in Section 6.7. Like before number of tuples in the network was

150 and tuple size was 8. Recognition rates for characters 0 to 9 were found

separately by the GA trained n-tuple classifier and then an average of these rates were

calculated to find the overall recognition rate. The experiment was repeated for ten

times and results were averaged to calculate an average overall recognition rate and it

was found to be 84.17 and the best recognition rate in ten runs was 84.96. Results

revealed that the GA based approach performed better than conventional random

selection and the RnP based method, but it couldn’t outperform the PSO.

Table 6.4 Results of Student’s t-test between GA (A) and a second algorithm(F)

Algorithm F,
Index from Table 6.1

texp-value p-value

1 11.43 1.00

2 2.02 0.97

3 -4.67 9.50e-005

122

85.4

Figure 6.9 Boxplot of GA and PSO

Statistical significance of the results was analysed by a student’s t-test. GA

was compared with the other algorithms and the results were tabulated in Table 6.4.

The null hypothesis for the test was “average recognition rate by GA (X) is higher

than any second algorithm (T) from Table 6.1”. The t-value against the conventional

random selection approach was much higher than the tabulated t-value of 3.92 (for 18

degrees of freedom) and it could be stated that the improved results of the GA over

the random selection approach was “very highly significant”. GA didn’t perform

well against the PSO. The t-value against the PSO is negative in the table, which

means that the null hypothesis, X>Y, should be rejected and rather the alternative

(Y>X) is true. Thus statistically the improved result of PSO over GA was “very

123

highly significant”. The t-value against the RnP based approach is 2.02, which

indicates that the mean of the GA is higher than the mean of the RnP at 90%

confidence level. The p-values in the table indicate the probability o f observing the

result by chance given that the null hypothesis is true. A very small p-value against

PSO agreed that the fact that the null hypothesis against PSO is invalid.

Figure 6.10 Boxplot of several algorithms

Figure 6.9 displays the side-by-side box plots o f the GA and the PSO. Data

samples of GA or PSO were obtained by running each algorithm for ten times. The

notches in the figure are drawn about the median. Median of recognition rates for

PSO was significantly higher (with 95% confidence) than the median for GA. Figure

6.10 portrays location and variation changes between different data groups of all

124

previously used algorithms to train n-tuple network. It can be noted that the

recognition rates by conventional random approach were clustered at the bottom of

the plot whereas data for PSO were clustered at the very top. GA was second in

perfonnance and RnP was third.

Iterations (PS) or Generations (GA)

Figure 6.11 Tuple maturity curve

6.7.4 Convergence properties between PSO and GA

It has been found in the experiments that both the Particle Swarm and Genetic

Algorithm can improve the recognition power of the n-tuple network. The superiority

of the PS over GA was statistically very highly significant. The target of the

experiment was to find 150 optimal maps for the n-tuple network. It took some time

to find these maps. In GA this time was measured by the number of generations and

125

in PS it was measured by number of iterations. The more iterations or generations the

system takes to find the 150 maps the more time is taken by the system to complete

the search or converge. So the number o f iterations or generations required to find the

optimum number o f maps measures the convergence time. Both GA and PS were

executed for ten runs. Figure 6.11 compares the speed the convergence of GA and PS

in finding 150 optimum maps. The curve in the figure is termed as the “tuple maturity

curve”. The best perfomred GA and PS in ten runs were selected for this comparison.

PS took 1009 iterations to converge while the GA took 1084 iterations. So the PS

converged slightly faster than the GA.

Figure 6.12 Progressive recognition rates when optimised by GA

126

0 200 400 600 800 1000 1200
Iterations

Figure 6.13 Progressive recognition rates when optimised by PS

0 200 400 600 800 1000 1200
Iterations (PS) or Generations (GA)

Figure 6.14 Progressive recognition rates by the best PS and GA

127

Figure 6.12 and Figure 6.13 present the progressive recognition rates by both

algorithms as the search progresses. Progressive recognition rates were calculated by

using 150 tuples at any iteration. Before the convergence out of this 150 tuples some

will be matured tuples (found at any iteration) and the rest will be randomly selected.

An overall recognition rate found from the mix of 150 matured and randomly selected

tuples constitutes a progressive recognition rate. In Figure 6.14 the best run search by

both the algorithms is compared. A polynomial trend line is drawn along each curve

to clearly show the difference in values between the PS and GA. From the results

shown in Figure 6.12, Figure 6.13 and Figure 6.14, it is clear that the PS takes slightly

less number o f iterations to converge and it achieves higher recognition rate

compared to the GA.

6.7.5 Varying time constant for faster convergence

The value of time constant shown in equation (5.3) is crucial to compromise between

the speed and performance of the search. Had a very small r been selected, the

system would convergence too quickly and it would not be given enough time to

search for better solution. The main target was to improve the performance to the

highest possible level and to do so an empirical value of 100 was chosen for r in all

previous experiments, which provided enough time to run the search for exploring

solutions. A high value of 100 for z resulted in a very slowly convergent system. A

complete search of 150 maps took around four hours in a 2 GHz Pentium 4 machine.

It was favourable to find a way to speed up the search process without loosing any

noticeable difference in performance. For this a graphical plot was made with the

number o f mature tuples against the iterations and this plot was named as the “tuple

maturity curve”.

128

160

Figure 6.15 Tuple maturity curve for a PSO run

Figure 6.15 shows the tuple maturity curve in a typical complete search

carried out with a fixed z of 100. From the figure it can be noted that in many cases

for a considerable number o f iterations the system couldn’t find any new map or

tuple. The phase with no new map can be termed as unproductive phase (shown in

Figure 6.15). One can argue that the phase was unproductive because o f the

threshold was too high during that time, hence unsuitable. The system had to go

through this unproductive phase for quite a while until the threshold was dropped

down to a suitably low value, defined by equation (5.2), to allow a new map to be

included in the system. To reduce this time waste by unproductive phases an

alternative technique was sought. The method is described below. On the tuple

maturity curve (Figure 6.15) a tangent drawn at any point can tell the system if any

new tuple has been discovered in the current iteration. A tangent can be measured by

129

finding the differences in number of matured tuples between the current iteration and

the previous iteration. A zero tangent value will tell the system that the iteration that

has been just finished was unproductive and the threshold equation should to be

penalized for this. One way to penalize the threshold equation is to drop the value of

r by a percentage. A high percentage drop in the value of z might damage the

performance o f the network. This is due to the stochastic nature of the search

algorithm. The equation for penalizing an unproductive iteration was formed and it

was as follows, where tu represents an unproductive interval:

f
z(tu + 1) = z(tu)x 1

V

T D '
100y

(6.3)

Table 6.5 Results for varying r

% drop of r

from 100,

T D

Convergence

time for 10 runs

(hours and mins)

Performance
(Avg.

recognition rate

in 10 runs)

Relative

performance,
when compared

with T D - 0

0 37 hrs 51 mins 84.89 0

5 9 hrs 34 mins 84.96 +0.07

20 3 hrs 49 mins 84.40 -0.49

50 1 hr 57 mins 84.11 -0.78

80 1 hr 10 mins 83.96 -0.93

To demonstrate the affect o f TD (percentage drop o f z), an experiment was

conducted by incorporating equation (6.3) in the search algorithm. The task of the

experiment was to find optimum input maps by using the PS method. Table 6.5

130

M
at

ur
e

tu
pl

es
 o

r i
np

ut
 m

ap
s

shows the outcomes o f the experiment. For 5% drop in the value o fr , ten complete

searches took 9 hours and 34 minutes which was almost 4 times quicker than the

TD=80 TD=50

Figure 6.16 Tuple maturity curves at different T D s

Figure 6.17 Variation of r for T D = 5 0

131

previous PS search (index 3 in Table 6.1) where r had always a fixed value of 100,

in other words TD was zero. The performance o f the n-tuple network for 5% drop in

the value of r turned out to be better than that for a fixed r of 100. For 20% drop, the

perfonnance was reduced by 0.49 but the speed of the search was increased by more

than 9 times when it was compared with a search for TD=0. So the general trend

was: as the value of TD was increased, the speed of the convergence was substantially

increased but the system performance was reduced to an extent. As long as the

performance of the network does not get reduced to a noticeably low value, the drop

in the value of r can be acceptable for faster convergence.

Figure 6.18 Fitness threshold for T D = 5 0

Figure 6.16 plots the number of optimum maps found at any iteration for

different values o f TD. From the figure it can be seen that the number of iterations

required to find the 150 tuples is much less when the TD has a high value. Figure 6.17

shows a run from the experiment where the value of r was varied throughout the

132

search with TD=50. As different input maps are sought for different class groups, in

Figure 6.17 the value o f r is initialised to 100 every time the search algorithm

switches from once class group to the next class group and after that the r is reduced

according to (6.3) with TD=50. Figure 6.18 shows how the fitness threshold

described in (5.2) varies throughout a search when TD in (6.3) is fixed to 50. Data

for Figure 6.15, Figure 6.16 and Figure 6.17 were taken from the same experiment.

6.8 Summary
This chapter described in detail the implementation of the particle swarm based tuple

selection technique. Suitable values of the parameters for the algorithm were

explained. PS optimised n-tuple network was used to recognise handprinted

characters from the NIST database. Statistical analysis o f the results showed that the

improvement in recognition performance by the PS optimised network over the RnP

based stochastic approach (described in Chapter 5) was very highly significant.

This chapter also provided a detailed comparison between the PSO and GA.

From the procedure, it can be learnt that the PSO shares many common points with

the GA. Both algorithms start with a group of a randomly generated population; both

have fitness values to evaluate the population. Both update the population and search

for the optimum. However, PSO does not have genetic operators like crossover and

mutation. Particles update themselves with the internal velocity. They also have

memory, which is important to the algorithm. There are control parameters involved

in both GA and the PSO, and appropriate setting o f these parameters is a key point for

success. Section 6.7.3 demonstrated that the PSO performed better than GA and the

improvement was statistically very highly significant. Later in this chapter the

convergence characteristics of both the algorithms were presented for selecting input

maps of the n-tuple network. Both PSO and GA were conducted for ten runs. The

best run and worst run curves for GA were wider apart in Figure 6 .12 compared to the

133

distance between the curves in Figure 6.13. This demonstrates that the results of the

PS were more consistent than the results of the GA. It was also found that dropping

the value of r (6.3) during unproductive iterations can substantially increase the

speed of the search. In the experiment a 5% drop in the value of r from 100 was

advantageous with slightly higher recognition rate in less number of iterations.

Results reveal that it is not only the speed but the performance of the system has to be

looked after also and to avoid a premature convergence with a low recognition rate

the time constant has to be varied very carefully.

134

Chapter 7

Hybridising Particle Swarm

7.1 Swarm Diversity
Although, in general, PSO results in good solutions, in high-dimensional spaces it

might stumble on local minima [Kalyan et al., 2003], It may be argued that many of

the particles are wasting computational effort in seeking to move in the same

direction (towards the local optimum already discovered), whereas better results may

be obtained if various particles explore other possible search directions. Repetition of

the same positional value of a pixel in forming a particle can obstruct the exploration

of new features in an image. Again two particles with same pixel-location values will

overlap. If any two particles have the same pixel-location values in all dimensions

then they will completely overlap with each other and carry same information to the

n-tuple network. Different particles with the same information will not eventually

benefit the system. Thus some sort of diversity in the PSO could be helpful to achieve

better recognition rate. One way to add diversity in PSO is to use the Self-Organized

Criticality [Bak, 1996]. Extending the PSO with SOC seems very promising reaching

faster convergence and better solutions [Lovbjerg and Krink, 2002]. Another way of

improving the PSO is by hybridising it with a technique that considers the

neighbourhood interactions, which is naturally observed and expected in animal

135

behaviour [Peram et al., 2003; Kalyan et al., 2003]. Hybridisation refers to combining

different approaches to benefit from the advantages o f each approach. Section 7.3

explains the algorithm described in [Peram et al., 2003] which considers the nearest

neighbour interactions in PSO. Implementation of the SOC algorithm [Lovbjerg and

Krink, 2002] will be introduced in the next section.

7.2 Self-Organized Criticality
[Lovbjerg and Krink, 2002] have explored extending the PSO with the SOC to

improve population diversity. To understand the concept o f the SOC lets consider a

pile of sand (Figure 7.1). At some point, as grains o f sand are slowly and steadily

added, the pile becomes "critical" or unstable, and an avalanche (Figure 7.2) occurs

spontaneously. In the sand-pile model grains are dropped on a lattice, they can pile up

until a specified height is reached, after which they fall on the neighbouring sites. In

this way avalanches propagate trough the system until they fall out o f the boundaries.

Now, this visual and obviously simple system is, in fact, complex (there are truly

many sand grains interacting), and, as the pile grows, it must attain the point of

criticality, which initiates the dramatic reorganization caused by the avalanche. [Bak,

1996] developed a simple mathematical model to simulate a growing sand pile, and it

also produced avalanches.

Figure 7.1 Bak’s Sand pile [Bak, 1996]
136

Figure 7.2 Avalanche in sand pile model [Dickman e t a l., 2000)

The main idea in SOC is that most state transitions in a component of a

complex system only affect its neighbourhood, but once in a while entire avalanches

of propagating state transitions lead to a major reconfiguration of the system. Self-

organized criticality has been found in a variety of phenomena such as earthquakes,

volcanic activity, the game of life, landscape formation and stock markets. Chaotic

systems can change dramatically without external influence and stable systems

constantly change in very small steps. SOC describes how small amounts of external

influence can occasionally lead to the big changes observed in complex systems.

Evolutionary Algorithms and Particle Swarm Optimisation are models of complex

137

systems. In EAs for instance it can be a difficult task deciding when to apply certain

operators. Self-Organized Criticality has been successfully applied to improve the

performance of Evolutionary Algorithms. This was done in relation to mass

extinction and mutation operator control by [Krink et al., 2000; Krink and Thomsen,

2001] where extinction zones were formed (3x3 rectangles). Mutated copies of

currently best individual then substituted individuals in these extinction zones.

[Rickers et al., 2000] used SOC in relation to spatial mating control, where most

mates were immediate neighbours, but occasionally mates were selected from remote

places. Occasional outbreeding improved the performance by counter balancing the

effect of rigid neighbourhood inbreeding. Other aspects of SOC have been described

and applied to search problems by [Boettcher and Paczuski, 1997],

The SOC-PSO algorithm used for the experiments in the research had a

globally set “criticality limit”, denoted by CL, which is the maximum number of

times a position on the search space can be considered or taken in forming a particle.

If the criticality value o f a position on the search space exceeds this limit, the particle

corresponding to that position responds by dispersing the criticality within its

surrounding neighbourhood and then by relocating itself. Two types of relocation

were investigated in [Lovbjerg and Krink, 2002]: the first re-initialises the particle,

while the second pushes the particle with high criticality a little further in the search

space. The second approach was followed in the SOC-PSO model used for this

research. If the redistribution causes the criticality of the surrounding cell to be

increased then process continues until criticalities of all the positions are below the

maximum limit. The pseudo code of the SOC-PSO algorithm is given below:

begin
initialise
while(not terminate condition) do

begin

138

run PSO{
for i=l to the population size Q,

for d=l to the problem dimensionality n,

Apply the velocity update equation (2.1);

Limit velocity magnitude, Viid , (2.5) ;

Update Position, X i (d , (2.2) and (2.6);

criticality [X i (d] = criticality [X i ; d] +1;

while (Criticality value at Xiid >CL)

{criticality [Xi/d] = criticality [Xiid]-1 ;

Xiid =Disperse (Xiid) ;

criticality [X1#d] = criticality [Xi(d] +1; }

End-for-d;

Compute Fitness;

If needed, update historical information
regarding P±,d and Pgd i

End-for-i;

End
End

Function Disperse (Xijd)

{Xnew= /{ Xiid, random (0 to 7)};

return Xnew;}

139

From the pseudo code of SOC-PSO it can be seen that the SOC algorithm was

implemented within the PSO loop. Once the velocity and a new positional value were

found in PSO, the criticality value o f the new position was being checked. If the value

is more than the criticality limit then the dispersion phenomena was realized and it

was implemented by choosing a new location next to the previously found position.

New position’s criticality value was checked again and if the value was found to be

more than the criticality limit than again the dispersion will occur. Thus the

dispersion continues until the system finds a location where the criticality value is

less than the limit. The flow chart of the SOC is shown in the following figure.

Figure 7.3 Flow chart of Self-Organizing Criticality in PSO
140

The positions on the search space can be considered as a grid as shown in

Figure 7.4. X i(i in the figure represents a position which was found to have a critical

value more than the limit. The dispersion was realized by a random jump from X}d to

one of its surrounding positions. There are eight possible positions to jump around

Xi ti numbered from 0 to 7. In dispersion one o f the values from 0 to 7 was chosen

randomly and this value will define the new position. The arrow in the figure shows

the direction of jump.

Figure 7.5 A 4 by 4 input matrix

141

Criticality limit (CZ.) can control the diversity of the PSO. A particle will

disperse when criticality of any of its dimension will be more than the limit.

Criticality limit has to be carefully chosen. An increased criticality limit will allow

more particles to be crowded in the same location, thus will make the system less

diverse. With a small value of CL only fewer particles might bring the system to a

critical point and results in more dispersion. Later an experiment will be carried out

to count the number of times particles disperse in a search for different values of CL.

The total number of particles and its dimensionality also play important role

in setting up a value of CL. To understand this lets consider a swarm system of 4

particles with dimensionality 8 . Each particle sits on a 4 by 4 input matrix as shown

in Figure 7.5. So there are 16 locations in the matrix. With the dimensionality o f 8

each particle takes 8 places in that matrix. There are 4 particles, so the total places

required by all particles are 32. Because there are only 16 positions available in the

matrix so to accommodate 32 positions for all 4 particles each position needs to be

repeated at least twice. So the criticality limit for this system has to be at least 2. If

the limit is 1 then each position will be allowed to repeat only once, so there will be

only 16 positions available and this will not be enough to accommodate 32 positions

required by 4 particles. So a criticality limit 1 for this system will be invalid. The

criticality limit has to be chosen carefully such that input matrix will have enough

potential locations to accommodate all particles. Now if the input matrix is extended

to an image area of 32 by 32 and number of particles to 200 with dimensionality 8

then the lowest criticality limit will come out as 2. This is because each location in 32

by 32 image area needs to be repeated at least twice to accommodate 200 particles.

An equation can be formulated to find the lowest criticality limit. The smallest

criticality limit, denoted by CLmin, can be found by the (7.1) where W and H are the

width and height of a binary image, Q is the population size and D is the number of

dimensions (Section 2.6.2) of particles in PSO.

142

(7.1)

W x H

7.3 Nearest Neighbour Interactions in PSO
From natural observations and expectations of animal behaviour it can be stated that

the others in its neighbourhood can influence the particle’s behaviour or solution.

Thus conventional particle dynamics in PSO can be improved by using neighbour

interactions for searching better solutions. To battle premature convergence in PSO

neighbourhood interactions in PSO dynamics can be considered. A significant

modification in particle dynamics is required to introduce the effects of multiple other

particles in each particle. [Peram et a l, 2003] proposed a method where each particle

is moved towards other nearby particles with a more successful search history,

instead of just the best position discovered so far. This is in addition to the terms in

the original PSO update equation, (6.1). The proposed algorithm is described as

Fitness-Distance-Ratio [Peram et a i, 2003] based PSO (FDR-PSO) which selects

only one other particle when updating each velocity dimension and which is chosen

to satisfy two following criteria:

1. It must be near the particle being updated.

2. It should have visited a position of higher fitness.

In FDR-PSO each velocity dimension is updated by selecting a particle that

maximizes the ratio o f the fitness difference to the one-dimensional distance. In other

words, the d-th dimension of the z'-th particle’s velocity is updated using a particle

called the P^,-, with prior best position Pb, chosen to maximize the following ratio:

FDR (b,i,d) =
Fitness(Pb) - Fitness(Xi)

I Pbd — Xi,d\ (7.2)

143

where b i and |...| denotes the absolute value. A new term was introduced

into the velocity update equation with a new coefficient ‘ <//3 ’ and a new stochastic

weight factor ‘ran3’. Like in original PSO (Section 6.2) ‘r a n i’ can be uniformly

distributed in {0,1} or can have a constant value of 1. Note that the FDR-PSO with

\j/3=0 is the same as the usual PSO algorithm described by [Kennedy and Eberhart,

1995]. The modified velocity equation for FDR-PSO is presented below:

Vi, d(t + 1) = co x Vi,d(t) + i//lx ran 1 x (Pi,d - Xi,d(t))

+ y/2x ran 2 x (Pgd - Xi,d(t)) (7.3)
+ \j/ 3 x ran3 x (P/dr - X, d(t))

The pseudo-code for the FDR-PSO algorithm is given below:

begin

initialise

while(not terminate condition) do

begin

run PSO{

for i=l to the population size Q,

for d=l to the problem dimensionality n,

Apply the velocity update equation,

(7.3); In (7.3) Pya is the best

position visited so far by Xi,&,Pgd is

the best position visited so far by

any particle and P fdr is chosen by

144

Fitness(Pb) - Fitness(Xi)maximizing ----- ,------- ,----- , where
\Pbd-Xi,d\

Pb is Pfdr' s previously best found

position

Limit magnitude, Vi,d;

Update Position, Xi,d;

End-for-d;

Compute Fitness;

If needed, update historical information

regarding Pd/d and Pgd 1

End-for-i;

End

End

From the above pseudo code it can be observed that the only difference

between the PSO and FDR-PSO is the use of equation (7.3) where the influence of a

third particle Pfdr is applied. As equation (7.3) is used for every dimensionality of a

particle, so each dimension of a particle will have the influence o f a Pfdr. In the

previous chapter it was explained that for an n-tuple classifier the dimensionality is

equivalent to the tuple-size. If the tuple-size is 8 then the dimensionality of a tuple or

a particle will be 8 . So for a particle with dimension 8 the number o f Pfdr will be 8 .

The FDR-PSO algorithm was applied to optimise a set o f input maps. Tuple-size used

in the experiment was 8 . Table 7.1 shows some of the results from an experiment

where FDR-PSO was used to find better n-tuples.

145

T able 7.1 E xam ples o f th ird particle, Pfdn for each d im ension o f a particle P ,

Particle index, / Dimension, d Index of third

particle, Pfdr

1 95

2 175

3 45

4 45

1 5 153

6 36

7 58

8 29

1 126

2 61

4 3 101

4 45

5 197

6 165

7 165

8 95

146

Table 7.1 shows the results of only two particles (with index 1 and 4) to

illustrate the fact that each particle had 8 dimensions and each dimension had a Pfdr.

For example the velocity o f the 5th dimension of the particle with index 1 was

influenced by a particle with index 153, velocity of the 2nd dimension of the particle

with index 4 was influenced by a particle with index 61 and so on. Pfdr satisfies the

equation (7.2) and this eventually influence the velocity o f the dimension defined by

the equation (7.3). As FDR was an extension to the original PSO algorithm, so along

with the Pfdr two other particles (global best and its own best) also influenced a

particle’s velocity. According to [Kalyan et al., 2003], FDR-PSO decreases the

possibility of premature convergence and thus is less likely to be trapped in local

optima. In addition, FDR-PSO {y /\-y /2 =1, ^3=2,) outperformed PSO and several

other variations of PSO in different tested benchmark problems [Kalyan et al., 2003],

7.4 Combining SOC and FDR with PSO
When the SOC algorithm is combined with the FDR and PSO a new level of

hybridisation is achieved. FDR affects on the velocity o f a particle while SOC pushes

a particle to relocate to its neighbourhood’s position due to its criticality value in the

current position. A SOC-FDR-PSO algorithm is a hybrid technique where criticality

values of positions are taken into account once the velocities and positions of

particles are being updated by the FDR-PSO. Thus SOC-FDR-PSO can add more

diversity in searching. The pseudo-code of SOC-FDR-PSO is given below. From the

code it can be noted that for every dimension of a particle criticality of a position is

checked and if the value is found to be more than the limit than the dispersion starts

and it continues until a new position with a criticality value less than the limit is

sought.

147

begin
initialise

while(not terminate condition) do

begin

run PSO{

for i = 1 to the population size Q,

for d=l to the problem dimensionality n,

Apply velocity update equation (7.3)

Limit magnitude, Vi;d;

Update Position, X i / d ;

criticality [Xi,d] = criticality [Xijd]+1 ;

while (Criticality value at Xi;d >CL)

{criticality [Xi;d] = criticality [Xi(d] -1 ;

Xi/d=Disperse (Xi(d) ;

criticality [Xi(d] = criticality [Xijd] +1 ; }

End-for-d;

Compute Fitness;

If needed, update historical information

regarding Pi,d and Pgd !

End-for-i ;
End

End
148

7.5 Experimental Results

Experiments were conducted with several variations o f PSO, FDR-PSO, SOC-PSO

and SOC-FDR-PSO obtained by changing different parameter values like particle

velocity, inertia constant (co), criticality limit (CL), swarm size (Q), stochastic weight

factor etc. The network was built out of 150 tuples with tuple-size 8 . So total tuples

available to be optimised was 150 and this was denoted as R in Section 6.2. Because

the tuple-size was 8 , so the dimensionality of the hybrid PSO algorithm was 8 . The

task was to use hybrid PSO algorithms to selectively choose tuples that describes the

classes better and later use these tuples to recognise a test data set. The NIST (Section

4.2.1) database consists of handwritten digits (0,1...9) was used in the experiments.

Like the experiments described in last two chapters each character was a binary

image with the dimension 32 by 32. All digits were scaled into same dimension and

centred. Like experiments described in the last two chapters the available tuples were

distributed among classes according to the difficulty associated in recognizing the

patterns. It was reported in Section 5.5 that character 1 was most difficult class to

recognize, so it gets most number of tuples to describe the class. The same numbers

o f class specific tuples presented in Table 5.2 were used for the experiments with

hybrid PSO. To compare results, the n-tuple network was trained with various

methods as listed in Table 7.2. The overall recognition rates, the average o f all

recognition rates of all classes, were found in the experiments. The recognition rates

found by different approaches were mean o f ten runs. The best recognition rate by

any algorithm in ten runs was also recorded. The average recognition rates by

different methods are also compared in a scattered column chart as shown in Figure

7.6. Numbers on the A-axis of the chart correspond to the indexes o f Table 7.2.

149

86

Algorithms

Figure 7.6 Different approaches from Table 7.2

Moving from the left to right of the .Y-axis of the chart gives better recognition

rates. Thus the algorithm corresponding to the rightmost column gives the best

recognition rate. The left most column in the chart corresponds to the traditional

approach o f n-tuple training, which is basically random selection process of input

maps. The second approach (“RnP” based in Chapter 5) shown in the table is a pure

hill climbing type method where the input maps are created randomly, so the

candidate solutions neither compete nor co-operate. SOC-PSO [Lovbjerg and Krink,

2002] and FDR-PSO [Peram et al., 2003] are hybrid PSO methods [Azhar and

Dimond, 2004c] with added diversity. Results corresponding to the pure particle

swarm based training are listed in indexes 3 and 4 of Table 7.2. Experimental

outcomes clearly reveal that hybrid PSO algorithms with proper parameter settings

can outperform other approaches. The best-performed algorithm, which is presented

by the rightmost column on Figure 7.6, was a version o f a SOC-FDR-PSO (index 22

150

in Table 7.2). In that algorithm ^/2 was set to zero and it means one of the main

components (social parameter) o f the old PSO algorithm was completely deleted.

Table 7.2 Recognition rates of the n-tuple network by different optimisation

In d ex

T r a in in g a lg o r ith m fo r n -tu p le n e tw o r k

T o ta l a v a ila b le tu p le s , R = 1 5 0 a n d T u p le -s iz e , n = 8

P o p u la t io n s iz e fo r P S O o r G A , Q = 2 0 0

A v e r a g e

R e c o g n it io n

R a te

(%)

B e st

R e c o g n it io n

R a te in 10 ru n s

(%)
1 Conventional random selection approach

[Bledsoe and Browning, 1959]

80.93 82.83

2 RnP based stochastic approach introduced

[Azhar and Dimond, 2004a]

83.67 84.50

3 PSO (^1=1, i/c2=l,Vmax=2, co =0.7,

S,och={ 0,1})

84.82 85.35

4 P S O (y /l= l, y/2=1, Vmax =40, co =0.7,

^ = { 0 ,1})

82.78 83.76

5 SO C -PSO (^l= l,v /2 = l, Vmax=2, co =0.7,

CL=2,OL=\,Stoch={0,\})

85.05 85.71

6 SOC-PSO(y/\=2,y/2=2, Vmax

=2, co=0.1 ,CL=2,OL=\, Stoch ={0,1})

85.03 85.45

7 SOC-PSO(y/\ =1, y/2 =1, Vmax

=2, co=0.1 ,CL=\0,OL=\, Stoch = {0,1})

84.76 85.07

8 SOC-PSO(y/l =1 ,^ 2 = 1 , Vmax =40, co =0.7,

CL=40,OL=4, Sloch ={0,1})

82.78 83.24

9 SOC-PSO(^//l =\,y/2 =l,Vmax =\0, co =0.7,

CL=2,OL=\, Stoch ={0,1})

84.30 84.80

151

In d e x T r a in in g a lg o r ith m fo r n -tu p le n e tw o r k

T o ta l a v a ila b le tu p le s , R = 1 5 0 a n d T u p le -s iz e , n = 8

P o p u la t io n s iz e fo r P S O o r G A , Q = 2 0 0

A v e r a g e

R e c o g n it io n

R a te

(%)

B e st

R e c o g n it io n

R a te in 10 ru n s

(%)

10 S O C -P S O (y / \ = \ , y / 2 = \ ,V max - 2 , CO =0.7,

C L = 2 ,O L = 4 , Stoch “ {0,1})

84.94 85.32

11 FD R -PSO (y / l= l , y /2 = 1 , y /3 = 2 , Vmax =2,

co = 0 .7 , Stoch -{ 0 ,1 })

84.90 85.49

12 FD R -PSO (y/1 =2, y/2 =2, y /3=2, Vmax =2,

ft» =0.7, ^ = { 0 , 1 })

84.89 85.42

13 FD R -PSO (y z l= l, y /2 = 0 , y /3 = \ , Vmax=2,

co =0.7, Stoch = {0,1})

84.89 85.34

14 FD R -PSO (^ 1 = 1 , y /2 = 0 , y /3 = 2 , Vmax =2,

CO = 0.7 , Stoch ={0,1})

84.95 85.45

15 FD R -PSO (^ 1 = 1 , y/2 =1, ^ 3 = 1 , Vmax=2,

co = 0 .9 , S ,0Ch = \)

84.47 84.73

16 FD R -PSO (^ 1 = 1 , ^ 2 = 1 , y /3 = 2 , Vmax=2,

co = 0 .9 , S toch = \)

84.12 84.68

17 FD R -PSO (y/1 =0, ^ 2 = 1 , y /3=2, Vmax=2,

CO = 0.9 , S Wch =1)

84.08 84.68

18 FD R -PSO (^ 1 = 0 , y /2 = 0 , y /3 = 2 , Vmax=2,

co= 0.9, 5 ^ /, =1)

84.78 85.49

19 FD R -PSO (^ 1 = 1 , y/2 =1, ^ 3 = 1 , Fma* =2,

co = 0 .7 , Stoch =1)

84.30 84.78

20 FD R -PSO (^ 1 = 1 , y /2 = 0 , y /3 = 2 , Vmax =2,

co= 0 .7 , S toCh = 1)

84.98 85.32

152

In d e x

T r a in in g a lg o r ith m fo r n -tu p le n e tw o r k

T o ta l a v a ila b le tu p le s , R = T 50 a n d T u p le -s iz e , n = 8

P o p u la t io n s iz e fo r P S O o r G A , Q = 2 0 0

A v e r a g e

R e c o g n it io n

R a te

(%)

B e st

R e c o g n it io n

R a te in 10 ru n s

(%)
21 FDR-PSO (y/l=2, y/2=2, i//3=0, Vmax=2,

co =0.7, Stoch =1)

84.54 85.48

22 SOC-FDR-PSO(\f/1 =1, ^2 =0, ̂ 3=1, Vmax

=2,co=0.1, CL=2, OL=\, Sloch ={0,1})

85.09 85.62

23 SOC-FDR-PSO(y/1 =1, y/2 =0, i//3 =2, Vmax

=2, co =0.1, CL=2, OL=1, Stoch ={0,1})

85.01 85.48

24 SOC-FDR-PSO(y/\ =1, y/2 =1, y/3 =2, Vmax

=2,co =0.1, CL=2, OL= 1, Stoch ={0,1})

85.03 85.75

25 SO C -FD R -PSO (^l= l,^2 =1,^3 =2,Vmax

=40,m =0.7, CL=40, OL=4, Stoch ={0,1})

83.08 83.97

26 Genetic algorithm based approach 84.17 84.96

It can be observed from the results that the random variable within the range

{0,1} for the stochastic weight factor, in equation (6.1) and (7.3), is more favourable

than a constant value o f 1. "Stoch denotes the stochastic factor in the table. Swarm

velocity also plays important role in the experiments. The Vmax o f 2 was observed to

be a good value to fine-tune the entire search space with 200 particles and this agreed

with the result presented in the previous chapter (Table 6.1). Setting the value of Vmax

to 40 returned poor recognition rates as shown in indexes 4, 8 and 25 of Table 7.2.

Several variations o f the SOC-PSO and SOC-FDR-PSO were conducted with

different values of the criticality limit CL. A criticality limit of 2 exhibited high

diversity and better performance than a value o f 40 or 10. In the experiments in

153

addition to SOC more diversity was added to the system by prohibiting any

duplication of a pixel location in forming a particle.

Table 7.3 Student's t-test between SOC-FDR-PSO (X), index 22 in Table 7.2, and a
second algorithm (T)

Index from

Table 7.2
Competing Algorithm (T) t-value p-value

1 Conventional random selection approach 15.26 1.00

2 RnP based stochastic approach 5.92 1.00

3 PSO (y/\= \, y/2 =l,Vmax=2, co =0.7,

S/oc*={0,l})

2.18 0.97

5 S O C -P S O (^ l= l,^ 2 = l, Vmax=2, co =0.7,

CL=2,OL=\,Stoch={0,\})

0.32 0.62

26 Genetic algorithm based approach 5.79 1.00

Further diversity was added by reducing the overlapping level, denoted by

‘O V in Table 7.2, between any two particles. In the table OL= 1 means that only one

dimensional value of a particle is allowed to match with any one dimensional value o f

any other particle. PSO based approach was also compared with Genetic algorithm

based training (index 26 in Table 7.2) and it was found that both GA and PSO based

approaches improved recognition rates o f the classifier from the conventional

counterpart. But PSO showed superior results compared to GA.

154

The experimental results of the hybrid PSO algorithm were assessed

statistically by using the student’s t-test (Section 4.4.1). The best-performed

algorithm (SOC-FDR-PSO) was compared with a second algorithm from Table 7.2

and results were tabulated in Table 7.3. The null hypothesis for the test was “average

recognition rate by the SOC-FDR-PSO (X) is higher than any second algorithm (T)”.

For 10 trials of each algorithm the degrees of freedom was 18. Tabulated t-values for

the confidence level 95%, 99% and 99.9% and 18 degrees of freedom were 2.10,

2.88, and 3.92. The t-values were calculated from the experimental results and these

are presented in Table 7.3. Results show that the increases in recognition rates by

SOC-FDR-PSO (index 22 in Table 7.3) over conventional random selection (index

1), RnP based stochastic approach (index 2) and the GA based method (index 26) are

statistically “very highly significant” because the observed t-values for all of these

cases were greater than 3.92. A very low t-value of 0.32 between the SOC-FDR-PSO

and SOC-PSO (index 5) demonstrates that statistically there was no noticeable

difference between the recognition rates by these two algorithms. The t-value

between the SOC-FDR-PSO and PSO (index 3) is greater than 2.10 and it implies that

due the added diversity the SOC-FDR-PSO performs better than the original PSO and

the superior results of the hybrid method were “significant” at 95% confidence level.

The p-value in Table 7.3 indicates the probability of observing the result by chance

given that the null hypothesis is true. Small values of probabilities cast doubt on the

validity of the null hypothesis.

Figure 7.7 displays the side-by-side box plots of the results found in the

experiments. Each method in Table 7.2 was run for 10 times and then the average was

taken. Recognition rates for all ten runs of an algorithm when grouped together

visually, it creates a box as shown in Figure 7.7. Thus each box in the figure was

constructed with the recognition rates of ten trials. The box plot conveys location and

variation information in data sets, particularly for detecting and illustrating location

155

and variation changes between different data groups o f algorithms. The notches in the

Figure 7.7 are drawn about the median so that notches that don’t overlap represent

significant differences between medians (with 95% confidence). The median of

recognition rates for SOC-FDR-PSO was above 85%, for PSO was just below 85%,

for RnP was just below 84%, for GA was just above 84% and for randomly selected

approach was near 81%. Clearly the SOC-FDR-PSO exhibited a significantly higher

median than any other algorithm. Box plots also show if there are unusual

observations (outliers) in the dataset. Outliers are individually identified with a plus

symbol in Figure 7.7. Two unusual observations were plotted: one for the random

selection and the other one for the PSO.

Algorithms

F igure 7.7 B ox p lot o f several algorithm s

156

T able 7.4 D ispersion for d ifferent C ritica lity set-up

Criticality limit, C L Dispersion count (Avg. of 30 cycles)

1 oo

2 748

3 111

4 28

5 8

6 2

7 1

>8 0

F igu re 7.8 D ispersion o f particles d ecreases w ith criticality

157

30

25

(UE 20
■*-*
DQ.
a «
O
(A
X
? 10

0

1... [...P 'T

■ Before
• After

0 10 15 20
x-axis of input matrix

25 30

Figure 7.9 Co-ordinates of X,-id (Table 7.5) before and after dispersion

Table 7.4 shows dispersion count or number o f times particles dispersed for

different values o f criticality limit. Dispersion count in the table was calculated by

finding the average numbers of dispersion in 30 cycles or iterations. Results show

that when the criticality limit, CL, was equal to or greater than 8 there was no

dispersion by any particle. This is because there was no situation where a particle’s

criticality could cross the limit. Dispersion count was found to be high for a small

value of a criticality limit. It showed highest value for a criticality limit o f 2 and then

the value was gradually dropped to 1 when the criticality limit was 7. Relationship

between the CL and dispersions count is presented in Figure 7.8. It was found (Table

7.2) that a small value in CL (2) was favourable for higher recognition rates. It was

158

due to the fact that more dispersion adds diversity in the system, in the other words

helps exploring solutions to new locations. But this benefit was achieved by the

system with the expense of spending more time in searching due to dispersion.

0 10 20

x-axis of input matrix
■ Before
• After

30

Figure 7.10 Dispersion in a typical SOC-PSO cycle for C L =4

From Table 7.4 it can be noted that when CL was 1, particles dispersed for

infinite times or forever. An infinite loop made the system non-convergent and hence

159

was not acceptable. To avoid a situation where the system might fall into an infinite

loop, equation (7.1) was formulated. If equation (7.1) is applied to the system the

minimum value o f CL can be calculated. In the experiment there were 200 particles

(Q), each with a dimensionality 8 (n). Area of each image was 32 (W) by 32 (H).

Once these values are put in equation (7.1), CLmin has come out to be 2. Thus once the

equation (7.1) is applied 1 would be automatically rejected as a valid value for CL

and this would clearly prevent the system to fall into an infinite loop.

-•it-"....................... ^ ^ m

m A s * ¥ « i l l
1 ♦ ♦ ^ ^ ♦ ♦ *

W ♦ » T ^

10 15 20

x-axis of input matrix
25 30

♦ Before
■ After

F igure 7.11 D ispersion in a typ ica l SO C -P SO cycle for C L = 2

160

T able 7.5 D ispersion in a typ ica l SO C -P SO cycle for C L = 5

Particle position, X iid Direction of dispersion

107 0

536 2

373 0

107 3

847 7

289 6

579 0

373 3

956 3

761 7

289 6

Table 7.5 holds the data of dispersion of particles in a SOC extended PS

optimised system. Results in the table were taken from a typical search cycle o f a

SOC-PSO simulation in training n-tuple classifier for CL=5. The first column in the

table shows positions of the particles where dispersion occurred and the second

column shows the direction of dispersion or direction o f jump around X i(i as defined

by Figure 7.4. Figure 7.9 shows the x-y co-ordinates o f X id from Table 7.5 in a 32 by

32 image area. Small squares and circles in the figure depict the positions of the

particles before and after dispersion respectively. As dispersion is realized in the

nearest neighbourhood area, so a circle in the close proximity of a square would most

likely represent the position after dispersion. Position “A ” in Figure 7.9 corresponds

to a value o f 373 of X i(i in Table 7.5. It can be noted from the table that there are two

161

occasions where the value of X u was 373, but for both the cases the direction of jump

were different and this fact is portrayed by the two circles next to the position A in

Figure 7.9. A similar situation was observed next to the position B in the figure.

Figure 7.10 and Figure 7.11 illustrate the dispersion phenomena for lower values of

CL. Dispersion was most observed when the value of CL was 2. A low value of CL

forces the system to reach to the criticality point too often and therefore causes more

dispersion. Dispersion for CL=4 was not as high as for CL=2, but it was more than

the dispersion for CL=5 presented in Figure 7.9 and this acknowledges the fact

presented in Figure 7.8 and Table 7.4.

7.6 Summary
This chapter presented different variations o f hybrid PSO algorithms in training n-

tuple network. Original PSO was extended by the hybridisation o f the PSO separately

with the Self Organised Criticality and the FDR. The FDR algorithm was

implemented by incorporating a third particle in the neighbourhood o f the current

particle and it changes the velocity equation o f the original PSO. A novel

hybridisation was described in this chapter by combining the SOC and FDR with the

PSO to create an algorithm called SOC-FDR-PSO. Results revealed that the original

PSO was refined and performed better after hybridisation. This chapter elaborately

described different hybridisation techniques and how these approaches were applied

to optimise n-tuple networks for recognising binary handwritten characters from the

NIST database. A version of the SOC-FDR-PSO performed better than any other

approach. The differences in recognition rates by different approaches were assessed

by statistical tests. Results for hybrid PSO was found to be statistically significant

when compared with the original PSO. It was important to note that the performance

of any hybrid approach was very much dependent on different parameter values of

the algorithm. Values of the criticality limit played important role in exploration of

162

solutions for a SOC optimised network. A low value in CL was preferred to assist

exploration for new solutions. But the value of CL shouldn’t be less than the CLmin

(7.1), otherwise the training algorithm would fall into an infinite loop making it a non

-convergent system. It was clear that the hybrid PSO added some diversity in the

system and it helped to explore new locations to find better maps for the n-tuples.

163

Chapter 8

Conclusion

8.1 Summary of the thesis
This thesis investigated the application of an efficient optimisation method known as

Particle Swarm Optimiser to the field o f pattern recognition. Optimisation was

realised for the connectivity pattern of the n-tuple network which was proposed by

[Bledsoe and Browning, 1959] and described in Chapter 3 of this thesis. Motivation

for optimisation was explained in this chapter too. Conventional n-tuple system has

been implemented in hardware before by [Aleksander et a i, 1984; Azhar and

Dimond, 2003], Optimised n-tuple networks presented in this thesis require less

memory than a conventional network for a given performance demand. This is

because an optimised network requires less number of tuples than a conventional

network requires for a fixed performance level. So the optimised network will

facilitate the hardware implementation o f the classifier due to its less memory

requirements. The goal o f the optimisation was aimed at improving the recognition

performance of the n-tuple network to classify binary handwritten digits from the

NIST database. Important findings of this research are given below:

164

A novel implementation of the reward and punishment (RnP) based objective

function or fitness function was presented in Chapter 5. The equation (5.1) and

parameters for the function were modelled which helped to measure the goodness of a

solution by a stochastic search. Implementation o f the point scheme (5.4) was unique

and was explained in Chapter 5. Understanding of the threshold function used to

select solutions near the best-performed solution was depicted in this chapter. The

exponential decay o f the threshold was controlled by careful consideration of the

value o f the time constant in the threshold equation. The objective function described

in Chapter 5 was used to evaluate performance o f solutions with all versions o f PSO

and Genetic Algorithm described in Chapter 6 and Chapter 7.

A new search strategy was developed and was described in Chapter 5. The

uniqueness o f the strategy was to search for different target number of tuples for

different classes. The number was proportionate to the error rates. The search

algorithm named as RnP based search spent more time in finding tuples for a difficult

pattern class than an easily recognisable pattern. Experiments were conducted to find

an optimum set o f n-tuples using the RnP based search to recognise handwritten

characters from the NIST database. The controlling parameters for the experiments

were listed in this chapter. The rationale behind choosing the specific database was

given in Chapter 4. A brief overview of the experimental set-up was provided in this

chapter. RnP based stochastic algorithm achieved 2.74% improved recognition rates

over the random case proposed by [Bledsoe and Browning, 1959]. Results by the

RnP method were statistically very significant as well. The statistical test and plot

were explained in Chapter 4.

Chapter 6 reported the novel implementation of the particle swarm

optimisation on the n-tuple network. Learning scheme by PSO was explained and the

pseudo-code was given. Equations for PSO were included and the parameters

controlling the performance of PSO were explained. Implementation o f GA has been

165

explained in the same chapter to facilitate a comparison with PSO. Literature reviews

for both PSO and GA were reported in Chapter 2. Both algorithms were applied to

optimise connectivity pattern o f n-tuple networks. PSO trained network showed better

results than the GA trained network. Both GA and PS optimisation performed better

than the stochastic approach described in Chapter 5. Statistical analysis revealed that

the higher value o f overall recognition rates by PSO over GA was very highly

significant. Appropriate settings o f the control parameters in both PSO and GA were

the key point for the success. Low particle velocity in PSO was favourable to explore

more areas in search space and resulted better recognition rates. The progressive

recognition rates o f PS and GA trained network were compared to investigate the

convergence characteristics of the search. An equation to penalize the unproductive

iterations was developed to speed up the search. It was found that dropping the value

o f the time constant of the threshold equation (described in Chapter 5) during

unproductive iterations substantially increased the speed of the search. Results

revealed that it was not only the speed but the performance of the system had to be

looked after also and to avoid a premature convergence with a low recognition rate

the time constant had to be varied very carefully.

Chapter 7 presents the novel application of the hybrid particle swarm

techniques in optimising the n-tuple network. Hybridisation was required due the risk

o f premature convergence in PSO [Kalyan et al., 2003], To hybridise PSO with the

Self-Organised Criticality approach the later algorithm was modelled and adopted for

the n-tuple system. Hybridisation of PSO with another bio-inspired approach called

the Fitness-to- Distance Ratio or FDR was realized in [Peram et al., 2003]. Chapter 7

presents the application of this hybrid algorithm for the first time to optimise the n-

tuple classifier. This chapter also describes the novel hybridisation o f the PSO with

both the SOC and FDR and the resulting algorithm was named SOC-FDR-PSO.

While using the SOC based hybrid approach explanation was given for choosing the

166

right value of the criticality limit in experiments. Pseudo-code for all hybrid

approaches was provided in this chapter. Experiments were performed to compare the

performance of all hybrid approaches with varying parameters. A version of the SOC-

FDR-PSO outperformed all algorithms in optimising n-tuples. Superior results of the

SOC-FDR-PSO over PSO, GA and RnP based stochastic search were statistically

significant. The dispersion phenomena in a SOC extended PSO approach was

illustrated in experiments and more dispersion was found for lower values of

criticality limit. It was found in the research that performance of any hybrid approach

was very much dependent on the appropriate settings of the parameters in that

algorithm.

8.2 Future research
The points described below will indicate the lines of research that can be pursued.

• This thesis has been presented the optimisation of the n-tuple network.

Various bio-inspired approaches have been used to optimise the

connectivity pattern of the n-tuple system. The same methodologies could

be applied for other memory-based network as those networks are

connected to the input image in a similar fashion. One example is the

optimisation of connectivity pattern for the GCN [Howells et al., 1995]

network by using Genetic Algorithm presented in [Farhan-Khola and

Howells, 2003]. Particle swarm based optimisation could be equally applied

to that network. So applications of all the proposed algorithms in this thesis

for optimising connectivity patterns of other memory based networks could

be a fruitful research in future.

• It has been shown that the performance of the n-tuple network depends on

the size of the n-tuple (Section 4.3). Hoque’s [Hoque, 2001] work

confirmed Ullmann’s [Ullmann, 1969] explanation about the relationship
167

between the recognition performance and the value o f n. For all the

experiments in this thesis tuple size had a fixed value o f 8 . But in future

effects o f different tuple sizes could be investigated. For this, the

optimisation method could be designed to seek a set of optimum tuples with

different tuple-sizes. In this case PSO and its hybrid versions would search

for not only the connectivity pattern but also the size (n) of the pattern for

different tuples.

• In the experiments presented in this thesis the total available tuples were

divided proportionately among classes according to the error rates. This was

an initial working hypothesis, which needs further investigation in future.

Also the calculated error rates were not normalised. So the effect of

normalised error rates will be explored in future as well.

• The proposed optimisation methods were successfully applied for the off

line optical character recognition (OCR) task. The performances of the

optimised network for non-OCR applications will be investigated in future.

• Experimental results suggested that the hybridisation of PSO with SOC and

FDR algorithms was favourable and resulted in better recognition rates.

This inspires in near future to investigate other hybrid techniques like the

LifeCyle model described in [Lovbjerg, 2002], LifeCycle model combines

Genetic Algorithms, Particle Swarm and Stochastic Hill-climbing and gives

better solution over the individual algorithms themselves. The pseudo-code

of the algorithm can be found in [Lovbjerg, 2002], where the individuals

(for n-tuple it will be connection maps) start as PSO particles, then switch

to GA individuals, then to hill-climbers, then back to PSO particles. The

switching happens if an individual makes no fitness improvement.

168

• Equation (6.3) was used to decrease the threshold value (5.2) of fitness

allowing new maps to be selected yielding faster convergence. A zero

tangent on the tuple maturity curve (Figure 6.15) indicated an unproductive

interval. During search an opposite o f the zero tangent, an infinite tangent,

could also exist. An infinite tangent would tell the system that a large

number of tuples were generated without diversity leading to premature

convergence. In this situation fitness threshold has to be increased so that

the new tuples require a higher fitness to be accepted as successful. One

way to increase the value of the threshold (5.2) would be to increase the

value of t in (5.3). A negative value of TD (percentage drop of z) in (6.3)

could increase the value of z . A negative of TD would mean a percentage

rise of z instead o f a percentage drop. In future, experiments will be

conducted to investigate if better results can be found by incorporating the

increase of threshold for iterations when large numbers o f tuples are

generated without diversity.

• Tuple search algorithm takes considerable amount of time to be executed.

This is because in software the mappings for different classes can be

searched only sequentially. Use of dedicated hardware engine would make

the search much faster, because with hardware search for different classes

could be run in parallel. So in future the optimisation algorithms will be

realised in hardware. Due to the advantage of the re-configurable feature of

an FPGA, it can be a good choice for hardware implementation [Azhar and

Dimond, 2003],

• Different neighbourhood topologies could be realized in PSO as suggested

by [Kennedy, 1999; Kennedy and Mendes, 2002], In a ring topology

particles could be arranged in ring, with same number of particles to the

right and left of a particle’s neighbourhood. In a Von Neumann topology

169

particles are connected using a grid where each particle is connected to its

four neighbour particles. Topologies have affect on propagation o f the best

particle in the swarm. Slower propagation enables the particles to explore

more areas in the search space and thus decreases the chance of premature

convergence. Investigation o f effects of different topologies in swarm

population for optimum selection o f n-tuples could be a good research in

near future.

170

Bibliography

Aarts, E. and Lenstra, J.K. (2003). Local Search in Combinatorial Optimization,

Princeton University Press.

Ackley, D. and Littman, M. (1991). Interactions Between Learning and Evolution, in

Artificial Life II, SLI Studies in the Sciences of Complexity, vol. X, eds. By C.G.

Langton, C. Taylor, J. D. Parmer & S. Rasmussen, Addison Wesley Publishers,

pp. 487-509

Affenzeller, M. and Wagner, S. (2004). SASEGASA: A new generic parallel

evolutionary algorithm for achieving highest quality results. Journal of Heuristics,

Special Issue on New Advances on Parallel Meta-Heuristics for Complex

Problems, 10(3), pp. 239-263.

Aleksander, I., and Stonham, T.J. (1979). Guide to Pattern Recognition using random

-access Memories, Computers and Digital Techniques, 2, pp. 29-40.

Aleksander, I., Thomas, W. V., and Bowden, P. A. (1984). WISARD: a radical step

forward in image recognition, Sensor Review, 4(3), pp. 120-124.

Aleksander, I. (1989). The logic of connectionist systems, in Neural Computing

Architectures, I Aleksander (ed), MIT Press, pp. 133-155.

Angeline, P. (1998a). Using Selection to Improve Particle Swarm Optimization. In.

International Conference on Evolutionary Computation, Piscataway, New Jersey,

USA, IEEE Service Center, pp. 84-89.

Angeline, P. (1998b). Evolutionary Optimization versus Particle Swarm

Optimization:. Philosophy and Performance Difference. In Proceedings of the

Seventh Annual Conference on Evolutionary Programming, pp. 601-610.

171

Arica, N. and Yarman-Vural, F.T. (2001). An Overview o f Character Recognition

Focused on Off-line Handwriting. IEEE Transactions on Systems, Man, and

Cybernetics, 31, pp.216-233.

Austin, J. (1994). A Review of RAM based Neural Networks, Proceedings of the

Fourth International Conference on Microelectronics for, IEEE Computer Society

Press, pp. 58-66.

Austin, J. (1998). RAM-Based Neural Networks, a Short History. In RAM-Based

Neural Networks, Austin, J. (Ed.), York, UK, pp. 3-17.

Azhar, M.A.H.B. and Dimond, K.R. (2003). An FPGA Based Evolutionary

Controller for Mobile Robots, The 2003 International Conference on Machine

Learning; Models, Technologies and Applications (MLMTA’03), IEEE Computer

Press, June 23-26, Monte Carlo Resort, Las Vegas, Nevada, USA.

Azhar, M. A. H. B. and Dimond, K.R. (2004a). A Stochastic Search Algorithm to

Optimize an N-tuple Classifier by Selecting Its Inputs, International Conference on

Image Analysis and Recognition, Porto, Portugal, Springer-Verlag, September 29 -

October 1.

Azhar, M.A.H.B. and Dimond, K.R. (2004b). Using Particle Swarm with Self-

Organized Criticality to Optimize Mapping in N-tuple Networks, Best paper award

winner in IEEE SMC UK-RI 3rd Workshop on Intelligent Cybernetic Systems

(ICS'04), 7-8 September, University of Ulster at Magee, Londonderry, NI, UK.

Azhar, M.A.H.B. and Dimond, K. R. (2004c). Hybridizing Particle Swarm with

Nearest Neighbour Interactions and Self-Organized Criticality to Optimize

172

Training of N-tuples, The 5th International Conference on Recent Advances in

Soft Computing (RASC 2004), Nottingham, United Kingdom, 16-18 December.

Back, T. (1992). Evolutionary Algorithms. ACM SIGBIO Newsletter, pp. 26-31.

Back, T. (1994). Evolutionary Algorithms: Comparisons of Approaches. In R. Paton,

editor, Computing with biological Metaphors, Chapman and Hall, pp. 227-243.

Back, T., and Schwefel, H. (1996). Evolutionary Computation: an overview. In

Proceedings of third IEEE Conference on the Evolutionary Computation, IEEE

press, pp. 20-29.

Back, T., Fogel, D. B., Whitley, D. & Angeline, P. J. (1997a). Mutation.In Back, T.,

Fogel, D. B. and Michalewicz, Z., editors, Handbook o f Evolutionary

Computation, Oxford University Press, pp. C3.2:l-C3.2:14.

Back, T., Hammel, U. and Schwefel, H. (1997b). Evolutionary computation:

comments on the history and current state. IEEE Transaction on the Evolutionary

Computation,! (l),pp.3-17.

Back, T. (1992). Self-Adaptation in Genetic Algorithms. In Proceedings of the First

European Conference on Artificial Life, MIT Press, pp. 227-235.

Bak, P. (1996). How nature works: the science o f self-organized criticality

(Copernicus, New York).

Bishop, J.M. (1989). Anarchic techniques for pattern classification, Ph.D. Thesis,

Reading University.

173

Bishop, J.M., Crowe, A.A., Minchinton, P.R. and Mitchell R.J. (1990). Evolutionary

Learning to Optimise Mapping in n-Tuple Networks, IEE Colloquium on Machine

Learning, 28 June, Digest 1990/117.

Bledsoe, W. and Browning, I. (1959). Pattern recognition and reading by

machine, Proceedings o f Eastern Joint Computer Conference, Birmingham,

pp.225-232.

Booker, L. B., Fogel, D. B., Whitley, D. & Angeline, P. J. 1997 Recombination.In

Back, T., Fogel, D. B. and Michalewicz, Z., editors, Handbook of Evolutionary

Computation. 97/1, C3.3, IOP Publishing Ltd. and Oxford University Press.

Boone, JM., Gross, GW, Greco-Hunt, V. (1990a). Neural networks in radiologic

diagnosis. I. Introduction and illustration. Invest Radiol, vol. 25, pp. 1012-1016.

Boone, JM, Sigillito, VG and Shaber, GS. (1990b). Neural networks in radiology: An

introduction and evaluation in a signal detection task, Medical Physics, vol. 17, pp.

234-241.

Boettcher, S. and Paczuski, M. (1997). Aging in a Model of Self-Organized

Criticality, Physical Review Letters, The American Physical Society, vol. 79, no.

5, pp. 889-892.

Bounessah, M. and Atkin, B.P. (1994). Comparison of the relative efficiency of total

and cold-extractable stream sediment chemistry in exploration geochemical

surveys in a semi-arid climate, Collo area, north-eastern Algeria. Journal of

African Earth Sciences, 19(1-2), pp. 51-60.

Bownamker, R.G. & Coghill G.G., (2002). Improved Recognition Capabilities for

Goal Seeking Neuron, Electronics Letters, vol. 28, no.3, pp.220-221.

174

Bramlette, M. (1991). Initialisation, Mutation and Selection Method in Genetic

Algorithms, for Function Optimization, In Proceedings of the Fourth International

Conference in Genetic Algorithms, pp. 100-107.

CEDAR CDROM-1, State University of New York at Buffalo, UB Commons, 520

Lee Entrance, Suite 202, Amherst,. NY 14228-2567, USA.

CEDAR CDROM-2, State University, of. New York at Buffalo, UB. Commons, 520

Lee Entrance, Suite 202, Amherst, NY 14228-2567, USA.

Chambers, J., William, C., Beat, K., and Paul, T. (1983), Graphical Methods for Data

Analysis, Wadsworth.

Charles, E. L. and Ronald, L.R. 1990. Introduction to Algorithms, MIT Press.

Chinneck, J. (2006). Practical Optimization: A Gentle Introduction,

http://www.sce.carleton.ca/faculty/chinneck/po.html

Christensen, S.S., Andersen, A.W., Jorgensen, T.M. and Liisberg, C.(1996). Visual

guidance of a pig evisceration robot using neural networks, Pattern recognition

letters, vol 17(4): pp. 345- 355.

Clerc, M. (1999). The Swarm and the Queen: Towards a Deterministic and Adaptive

Particle Swarm Optimization. In Proceedings of the IEEE Congress on

Evolutionary Computation, July, vol. 3, pp. 1951-1957.

Coello Coello, C.A. and Lechuga, M. (2002). MOPSO: A Proposal for Multiple

Objective Particle Swarm Optimization. In Congress on Evolutionary

Computation, Piscataway, New Jersey, USA, IEEE Service Center, vol. 2, pp.

1051-1056.

175

http://www.sce.carleton.ca/faculty/chinneck/po.html

Collins, T. 1998. Understanding Evolutionary Computing: A hands on approach. In

The Proceedings o f the International Conference on Evolutionary Computation

(ICEC'98). Part of the IEEE World Congress on Computational Intelligence,

Anchorage, Alaska. Morgan Kaufmann, CA

Deacon, J. (2006). The Really Easy Statistics Site, Biology Teaching Organisation,

University of Edinburgh, http://www.biology.ed.ac.uk/research/groups/jdeacon/

statistics /tressl.html

Dickman, R., Muñoz, M.A., Vespignani, A., and Zapperi, S., (2000). Paths to Self

organized criticality, Braz. J. Phys. 30, 27.

Dorigo, M. and Di Caro, G. (1999). The Ant Colony Optimization Meta-Heuristic.

New Methods in Optimization, D. Come, M. Dorigo and F. Glover, Eds.,

McGraw-Hill.

Di Caro, G., Dorigo, M.(1998). Ant Colonies for Adaptive Routing in Packet-

Switched Communications Networks, Proceedings of PPSN V - Fifth International

Conference on Parallel Problem Solving from Nature, Amsterdam, Holland,

September 27-30, Springer-Verlag, Lecture Notes in Computer Science, vol. 1498

Eberhart, R., Simpson, P. K., and Dobbins, R. W. (1996). Computational Intelligence

PC tools, 1st ed., Academic press professional, Boston, MA.

Eberhart, R. and Shi, Y. (1998a). Comparison between Genetic Algorithms and

Particle Swarm Optimization, In Proceedings of the Seventh Annual Conference

on Evolutionary. Programming, Springer-Verlag, pp. 611-619.

176

http://www.biology.ed.ac.uk/research/groups/jdeacon/

Eberhart, R. and Shi, Y. (1998b). Evolving Artificial Neural Networks. In

Proceedings of the the 1998 International Conference on Neural Networks and

Brain, pp. PL5- PL13.

Eiben, A.E., Raue, P-E., and Ruttkay, Zs. (1994). Genetic algorithms with multi

parent recombination, In Y. Davidor, H.-P. Schwefel, and R. Männer, editors,

Proceedings of the 3rd Conference on Parallel Problem Solving from Nature,

number 866 in LNCS, Springer-Verlag, pp. 78-87.

Eiben, A.E., Kemenade, C.H.M.V. and Kok, J.N. (1995). Orgy in the computer:

Multi-parent reproduction in genetic algorithms. In F. Moran, A. Moreno, J.J.

Merelo, and P. Chacon, editors, Proceedings of the 3rd European Conference on

Artificial Life, number 929 in LNAI, Springer-Verlag, pp. 934-945.

Ellis, H. and Sartaj, S. (1984). Fundamental o f Computer Algorithms, Computer

Science Press.

Engelbrecht, A. (2002). Computational Intelligence: An Introduction. John Wiley and

Sons.

ERIM: Environmental Research Institute of Michigan, Document Processing

Research Program, P.O. Box 134001, Ann Arbor, Michigan 48113-4001, USA.

Esmin, A. A. A., Aoki, A. R., and Lambert-Torres, G. (2002). Particle swarm

optimization for fuzzy membership functions optimization. Proc. of the IEEE Int.

Conf. on Systems, Man and Cybernetics, pp. 108-113.

Esquivel, S.C. and Coello Coello, C.A.(2003). On the Use of Particle Swarm

Optimization with Multimodal Functions. In Proceedings o f the IEEE

Transactions on Evolutionary Computation, vol. 2, pp. 1130-1136.

177

Farhan-Khola, S. and Howells, W.G.J.(2003). Design o f a Genetic Feature Selection

Algorithm for Neuron Input Mapping in N-Tuple Based Classifiers

International Conference on Machine Learning: Models, Technologies and

Applications (MLMTA), Las Vegas, Nevada, USA, pp.23-26.

Fairhurst, M.C. and Stonham, T.J. (1976). A Class. System for Alpha-Numeric

Characters Based on Learning Network Techniques, Digital Processes, 2, pp. 321-

339

Fletcher, R.(2000). Practical Methods of Optimization, second edition. John Wiely &

Sons.

Floreano, D. and Mondada, F. (1996). Evolution of Homing Navigation in a Real

Mobile Robot. In IEEE Transactions on Systems, Man, and Cybernetics - Part B:

Cybernetics, vol. 26, no.3, pp. 396-407.

Floudas, C. and P. Pardalos, P.(1992). Recent Advances in Global Optimization.

Princeton. Universality Press.

Fogel, D.B. (1995). Evolutionary Computation: Toward a New Philosophy of

Machine Learning Intelligence, IEEE Press, NJ.

Fogel, D.B. (1994). An introduction to simulated evolutionary optimization. IEEE

Trans. On Neural Network, 5(1), pp.3-14.

Gabarro, K. (2000). Tabu Search Algorithm, http://www.lsi.upc.es/~mallba/public/

library/firstProposal-BA/nodel 1 .html

178

http://www.lsi.upc.es/~mallba/public/

Garcia, L.A.C. (2003). Methods of Global Otimizapao for Choice o f the Standard of

Conectividade de Neural Redes without Weight. Mestrado in Computer science

Federal university of Pernambuco, UFPE, Brazil.

Garcia, L.A.C. and Souto, M.C.P. (2004). Global Optimisation Methods for Choosing

the Connectivity Pattern o f N-tuple Classifiers. In: IEEE International Joint

Conference on Neural Networks, Budapeste. Proc. o f the IEEE International Joint

Conference on Neural Networks, pp. 2263-2266.

Glover, F.(1986). Future paths for Integer Programming and Links to Artificial

Intelligence, Computers and Operations Research, 5, pp.533-549.

Glover, F. (1989). Tabu Search - Part I. ORSA Journal on Computing, vol.l, no.3,

pp. 190-206.

Glover, F. (1990). Tabu Search - Part II. ORSA Journal on Computing, vol.2, no.l,

pp. 4-32.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and machine

learning. Reading, Mass.: Addison-Wesley.

Grother, P.J. (1993). Cross Validation Comparison o f NIST OCR Databases, D. P.

D'Amato, Editor, SPIE, San Jose, USA, vol. 1906.

Govindan,V.K. and Shivaprasad, A.P. (1990). Character recognition - A review.

Pattern Recognition 23(7), pp. 671-683.

Gray, P., Hart, W., Painton, L., Phillips, C., Trahan, M. and Wagner, J. (1997). A

Survey of Global Optimization Methods, Sandia National Laboratories,

http://www.cs.sandia.gov/opt/survey/

179

http://www.cs.sandia.gov/opt/survey/

Guyon, I., Haralick, R, Hull, J. and Phillips, I. (1997). Database and benchmarking,

In H. Bunke and P. Wand, editors, Handbook of Character Recognition and

Document Image Analysis, World Scientic, chapter 30, pp. 779-799.

Hand, D.J. (1986). Recent Advances in Error Rate Estimation, Pattern Recognition

Letters, vol.4, pp.335 -346.

Harvey, I. (1993). Evolutionary Robotics and SAGA: the Case for Hill Crawling and

Tournament Selection. In Artificial Life III, Langton, C. (Ed.), Publisher:

Addison-Wesley, pp. 299-326.

Hebb, D.O. (1949).The Organization of Behavior. John Wiley & Sons. New York.

Hendy, M.D. and Penny, D. (1982). Branch and bound algorithms to determine

minimal evolutionary trees. Mathematical Biosciences, 60, pp.133-142.

Hepplewhite, L. and Stonham,T.J. (1997). N-tuple texture recognition and the zero

crossing sketch, Electronics Letters, vol. 33, no. 1, pp. 45-46.

Hertz, J., Krogh, A., and Palmer, R.(1991). Introduction to Neural Computation. MA:

Addison-Wesley.

Higashi, H. and Iba, H. (2003). Particle Swarm Optimization with Gaussian Mutation.

In Proceedings o f the IEEE Swarm Intelligence Symposium, pp. 72-79.

Hinton, G. E. (1989). Connectionist Learning Procedures, Artificial Intelligence 40(1-

3), pp.185-234.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor,

Mich., University o f Michigan Press.

180

Hoque, S. (2001). An approach to high performance image classifier design using a

moving window principle. PhD Thesis, Department o f Electronics, University of

Kent, Cantebrury, Kent, UK.

Horst, R., Pardalos, P. and Thoai, N. (2000). Introduction to Global Optimization,

second, edition. Kluwer Academic Publishers.

Howells, W.G., Bisset, D.L. and Fairhurst, M.C. (1995). A New Paradigm for RAM-

based Neural Networks Proceedings o f Second Weightless Neural Network

Workshop, University of Kent, pp.l 1-16

Ismail, A. and Engelbrecht, A.P.(2000). Global Optimization Algorithms for Training

Product Unit Neural Networks. In Proceedings of the IEEE International Joint

Conference on Neural Networks, vol.l, p p .l32-137.

Jain, A.K., Duin, R.P.W. and Mao, J. (2000). Statistical pattern recognition: A

review, IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 4-38.

Janikow, C. and Michalewicz, Z. (1991). An Experimental Comparison of Binary and

Floating. Point Representations in Genetic Algorithm. In Proceedings of the

Fourth International Conference in Genetic Algorithms, pp. 31-36.

Jorgensen, T.M., Linneberg, C. (1999). Theoretical analysis and improved decision

criteria for the n-tuple classifier. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 21 , pp.336-347.

Jorgensen, T.M. (1997). Classification of Handwritten Digits Using a RAM Neural

Net Architecture, International Journal of Neural Systems, vol. 8 , no .l, pp. 17-25.

181

Jergensen, T. M., Christensen, S. S. and Lüsberg, C. (1995). Crossvalidation and

information measures for RAM based neural networks. Proc. of the Weightless

Neural Networks Workshop, University o f Kent at Canterbury, UK, pp. 87-92.

Jong, K.A.D. (1975). An analysis of the behavior of a class of genetic adaptive

systems. PhD thesis, University of Michigan, Ann Arbor.

Jung, D., Krishnamoorthy, M.S., Nagy, G., Shapira, A. (1996). N-Tuple Features for

OCR Revisited. IEEE Transactions on Pattern Analysis and Machine Intelligence

18(7), pp. 734-745.

Kalyan, V., Thanmaya, P., Chilukuri, K.M. and Lisa, A. O. (2003). Optimization

Using Particle Swarms with Near Neighbor Interactions, GECCO, July 11-16,

Chicago, Illnois.

Kennedy, J. (1998). The behavior of particles, In 7th Annual Conference on

Evolutionary Programming, San Diego, CA, USA.

Kennedy, J. (1997). The particle swarm: Social adaptation of knowledge. In IEEE

International Congress on Evolutionary Computation, IEEE Press.

Kennedy, J., and Eberhart, R.C. (1995). Particle swarm optimization. Proc. o f the

1995 IEEE Int. Conf. on Neural Networks (Perth, Australia).

Kennedy, J. and Spears, W.M. (1998). Matching Algorithms to Problems: An

Experimental Test o f the Particle Swarm and Some Genetic Algorithms on the

Multimodal Problem Generator. Proceedings of the IEEE Int'l Conference on

Evolutionary Computation.

Kennedy, J. and Eberhart, R. (2001). Swarm Intelligence. Morgan Kaufmann.

182

Kim, J. and Myung, H. (1997). Evolutionary Programming Techniques for

Constrained Optimization Problems IEEE Transaction on Evolutionary

Computation, 1(2), pp. 129-140.

Kin, L.W. and George, C. (2005). Data Classification with an improved weightless

neural network, Journal of IT in Asia, vol. 1, no. 1, pp. 17-34.

Korte, B. and Vygen, J. (2002). Combinatorial Optimization: Theory and Algorithms,

Second Edition, SpringerVerlag, Berlin.

Kreyszig, E. (1970). Introductory Mathematical Statistics, John Wiley, section 13.4.

Krink, T. and Lovbjerg, M. (2002). The Life Cycle Model: Combining Particle

Swarm Optimisation, Genetic Algorithms and Hill Climbers. In Proceedings of the

Parallel Problem Solving from Nature Conference, Lecture Notes in Computer

Science, Springer-Verlag, vol. 2439, pp. 621-630.

Krink, T., Thomsen, R. and Rickers, P. (2000) Applying Self-Organised Criticality to

Evolutionary Algorithms, Parallel Problem Solving from Nature - PPSN VI (2000),

vol. 1, pp. 375-384.

Krink, T. and R. Thomsen, R.(2001). Self-Organized Criticality and Mass Extinction in

Evolutionary Algorithms, Proceedings of the Third Congress on Evolutionary

Computation (CEC-2001), vol. 2, pp. 1155-1161.

Kiirzl, H., 1988. Exploratory data analysis: recent advances for the interpretation of

geochemical data. Journal o f Geochemical Exploration, 30, pp.309-322.

Lovbjerg, M. (2002). Improving particle swarm optimization by hybridization of

stochastic search heuristics and self-organized criticality, Master's thesis

Department of Computer Science, University of Aarhus.
183

Levbjerg, M. and Krink, T. (2002). Extending particle swarm optimisers with self-

organized criticality. Proc. of the IEEE Congress on Evolutionary Computation,

Honolulu, Hawaii USA.

Ludermir, T.B., Carvalho, A., Braga, A.P. and Souto, M.C.P.(1999). Weightless

Neural Models: a review o f current and past work. Published in the Journal Neural

Computing Surveys, vol. 2, pp. 41-61.

Maltoni, D., Maio, D., Jain, A.K. and Prabhakar S. (2003). Handbook of Fingerprint

Recognition, Springer-Verlag, New York.

Maniezzo, V. and Colomi, A. (1999). The ant system applied to the quadratic

assignment problem. Knowledge and Data Engineering, vol.l 1, no.5, pp. 769-778.

MathWorks (2007). MathWorks Support web pages, The MathWorks, Inc.,

http: //www. mathworks. com/support/

McCauley, J., Thane, B. and Whittaker, A. (1994). Fat Estimation in Beef Ultrasound

Images Using Texture and Adaptive Logic Networks. Transactions of ASAE, vol.

37, pp. 997-1002.

Mcculloch, W. S. and Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in

Nervous Activity. In: Bulletin of Mathematical Biophysics, vol. 5. pp. 115-133.

Mesot, B. (2004). Self-Organization of Locomotion in Modular Robots: A Case

Study, Unpublished Diploma Thesis, http://birg.epfl.ch/page42735.html

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs,

third, edition. Springer-Verlag, Berlin.

184

http://birg.epfl.ch/page42735.html

Michalewicz, Z. and Fogel, D. (2000). How to Solve It: Modem Heuristics. Springer-

Verlag,. Berlin.

Mitchell, R.J., Minchinton, P.R. (1996). Optimising memory usuage in n-tuple

networks, Mathematics & Computers in Simulation, 40, pp: 549-563.

Mori, S., Suen, C.Y. and Yamamoto, K.(1992). Historical review o f OCR research

and development. Proceedings of the IEEE, July, Special Issue on Optical

Character Recognition, 80(7), pp.1029-1058.

Nagy, G.(1988).Chinese character recognition: A twenty-five year retrospective, in

Proc. 9th International Conference Pattern Recognition, pp. 163-167.

NICI: Nijmegen Institute for Cognition and Information, Handwriting Recognition

Group, Nijmegen University, The Netherlands.

O ’Connor, P.J. and Reimann, C. (1993). Multi-element regional geochemical

reconnaissance as an aid to target selection in Irish Caledonian terrains. Journal of

Geochemical Exploration, 47, pp.63-87.

Papadimitriou, C.H. (1994). Computational complexity, Addison-Wesley Publishing

Company.

Pardalos, P., Migdalas, A. and Burkard, R. (2002). Combinatorial and Global

Optimization. World Scientific Publishing Company.

Parsopoulos, K.E., Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N. (2001a).

Stretching technique for obtaining global minimizers through Particle Swarm

Optimization, Proc. of the PSO Workshop, Indianapolis, USA, pp.22-29.

185

Parsopoulos, K.E. and Vrahatis, M.N. (2001b). Modification of the Particle Swarm

Optimizer for locating all the global minima, Artificial Neural Networks and

Genetic Algorithms, V. Kurkova et al. (Eds.), Springer, pp.324-327.

Penny, W.D. and Stonham, T.J. (1990). Learning algorithms for logical neural

networks, in IEEE International conference on Systems Engineering, Pittsburgh,

PA, USA , pp. 625-628.

Peram, T., Veeramachaneni, K. and Mohan, C.K. (2003). Fitness-Distance-Ratio

based Particle Swarm Optimization. In Proceedings of the IEEE Swarm

Intelligence Symposium, IEEE Press, pp. 174-181.

Picton, P. (2000). Neural Networks (Grassroots Series), 2nd Edition , Palgrave

Publishers Ltd.

Porter, T. M. (1986), The Rise of Statistical Thinking. 1820-1900. Princeton, New

Jersey. Princeton University Press.

Ramanan, S., Petersen, R.S., Clarkson, T.G. and Taylor, J.G.(1995). pRAM nets for

detection of small targets in sequences o f infra-red images, Neural Networks 8 (7-

8), pp.1227-1237.

Rana, S. and Whitley, D. (1998). Search, Binary Representations, and Counting

Optima. In. Proceeding o f a Workshop on Evolutionary Algorithms, Sponsored by

the Institute for Mathematics and its Applications.

Ratnaweera, A., Halgamuge, S. and Watson, H. (2003). Particle Swarm Optimization

with Self-Adaptive Acceleration Coefficients. In Proceedings o f the First

International Conference on Fuzzy Systems and Knowledge Discovery, pp.264-

268.

186

Rardin, R.(1998). Optimization in Operations Research, Prentice Hall, New Jersey,

USA.

Reynolds, R., Peng, B. and Brewster, J. (2003). Cultural swarms II: Virtual algorithm

emergence, In Proceedings of IEEE Congress on Evolutionary Computation 2003

(CEC 2003), Canbella, Australia, pp. 1972-1979.

Rich, E. and Khight, K.(1991). Artificial Intelligence. (2 ed.) New York: McGraw-

Hill, Inc.

Rickers, P., Thomsen, R. and Krink, T. (2000). Applying Self-Organized Criticality

to the Diffusion Model, Late Breaking Papers at the 2000 Genetic and

Evolutionary Computation Conference, Morgan Kaufmann Publishers, vol. 1, pp.

325-330.

Riget, J. and Vesterstrom, J.S. (2002). A Diversity-Guided Particle Swarm Optimizer

-The ARPSO. Technical report, Department of Computer Science, University of

Aarhus.

Robinson, J., Sinton, S. and Rahmat-Samii, Y. (2002). Particle Swarm, Genetic

Algorithm, and Their Hybrids: Optimization of a Profiled Corrugated Horn

Antenna. In Proceedings o f the IEEE Antennas and Propagation Society

International Symposium and URSI National Radio Science Meeting, vol. 1, pp.

314-317.

Rohwer, R. and Morciniec, M. (1998). The Theoretical and Experimental Status of

the n-tuple Classifier. Neural Networks 11(1), pp. 1-14.

Rohwer, R. and Morciniec, M.(1996). A Theoretical and Experimental Account of n-

tuple Classifier Performance. Neural Computation, vol. 8, pp. 629-642.

187

Rohwer, R. and Lamb, A.(1993). An exploration of the effect o f super large n-tuple

on single-layer RAMnets. In N. M. Allison, editor, Proceedings o f the Weightless

Neural Network Workshop (WNNW93), University of York, UK, pp.33-37.

Rohwer, R. and Cressy, D. (1989). Phoneme classification by boolean networks,

Proceedings o f the European Conference on Speech Communication and

Technology, pp.557-560.

Rosenblatt, F. (1958). The Perceptron. a Probabilistic Model for Information Storage

and Organization in the Brain. In: Psychological Review, vol. 65, pp.386-408.

Salhi, S. (2002). Defining tabu list size and aspiration criterion within tabu search

methods. Computers and Operations Research, 29(1), pp.67-86.

Salman, A. (1999). Linkage Crossover Operator for Genetic Algorithms, PhD

Dissertation. School of Syracuse University, USA.

Shang, Y. and Wall., B.W. (1996). Global optimization for neural network training.

IEEE Computer, 29(3), pp. 45-54.

Shi, Y, and Eberhart, R. (1998a). Parameter selection in particle swarm optimization,

in Evolutionary Programming VII: Proceedings o f 7th Annual Conference on

Evolutionary Programming, Springer-Verlag, Lecture Notes in Computer Science,

pp. 591-600.

Shi, Y, and Eberhart, R. (1998b). A Modified Particle Swarm Optimizer. In

Proceedings of the IEEE Congress on Evolutionary Computation, pp. 69-73.

Shi, Y. and Eberhart, R. (2001). Fuzzy Adaptive Particle Swarm Optimization. In

Proceedings Congress on Evolutionary Computation, Seoul, S. Korea.

188

Shimodaira,H. (1996). A new genetic algorithm using large mutation rates and

population-elitist selection (GALME), Proceedings o f Eighth IEEE International

Conference on Tools with Artificial Intelligence, 16-19 Nov. pp. 25-32.

Simoes, E.D.V. (2000). Development o f an embedded evolutionary controller to

enable collision-free navigation o f a population of autonomous mobile robots, PhD

Thesis, University o f Kent, Canterbury, UK, November.

Settles, M. and Rylander, B. (2002).Neural network learning using particle swarm

optimizers. Advances in Information Science and Soft Computing, pp. 224-226.

WSEAS Press.

Spall, J. (2003). Introduction to stochastic search and optimization: estimation,

simulation, and control, Wiley-Interscience.

Spears, W.M., DeJong, K.A., Back, T., Fogel, D.B., de Garis, El.(1993). An

Overview on Evolutionary Computation, Proceedings of European Conference on

Machine Learning, Vienna, Austria.

Streiner, D.L.(1997). Speaking Graphically: An Introduction to Some Newer

Graphing Techniques. Canadian Journal o f Psychiatry, vol. 42, pp.388-394.

Suganthan, P. N. (1999). Particle swarm optimiser with neighbourhood operator.

Proc. of the IEEE Congress on Evolutionary Computation, IEEE Service Center,

Piscataway, NJ, pp. 1958-1962.

Sutton, R. and Barto, A.(1998). Reinforcement learning: an introduction. Adaptive

computation and machine learning. MIT Press, Cambridge, MA.

189

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Schaffer, D. (ed.),

Proc. of the Third Int. Conf. on Genetic Algorithms. Morgan Kaufmann Pub.

Tambouratzis, G.(2000). Variable Sensitivity in Unsupervised Clustering Tasks with

an n-tuple-based Self-Organising Neural Network. International Journal o f Neural

Systems, vol. 10, no. 2, pp. 107-121.

Tarling, R. and Rohwer, R.(1993). Efficient use of training data in the n-tuple

recognition method, IEE Electronics Letters, 29(24), pp. 2093-2094.

Tsou, D. and MacNish, C. (2003). Adaptive Particle Swarm Optimisation for High-

Dimensional Highly Convex Search Spaces. In Proceedings o f the IEEE Congress

on Evolutionary Computation, vol. 2, pp. 783-789.

Tukey, J.W. (1977). Exploratory Data Analysis, Reading, MA: Addison-Wesley.

Turing, A. M. (1937). On Computable Numbers, with an Application to the

Entscheidungsproblem. Proc. London Math. Soc. Ser. 2 42, pp. 230-265,

Reprinted in The Undecidable (Ed. M. David). Hewlett, NY: Raven Press, 1965.

Tomassini, M. (1995). A Survey of Genetic Algorithms, Annual Reviews of

Computational Physics, World Scientific,Vol.Ill, pp.87-118.

Thomas, C., Leiserson, C. and Rivest, R.(1990). Introduction to Algorithms.

McGraw-Hill.

Ullman, J.R. (1969). Experiments with the n-tuple method of pattern recognition,

IEEE Transactions on computers, pp. 1135-1137.

Ullman, J.R. and Kidd, P.A. (1969). Recognition experiments with typed numeral

from envelopes in the mail. Pattern Recognition, (1), pp.273 -289.

190

Van den Bergh, F. and Engelbrecht, A.P. (2000). Cooperative Learning in Neural

Networks using Particle Swarm Optimizers. South African Computer Journal, vol.

26, pp.84-90.

Van den Bergh, F. (2002) An Analysis o f Particle Swarm Optimizers. PhD thesis,

Department of Computer Science, University of Pretoria, Pretoria, South Africa.

Van den Bergh, F. and Engelbrecht, A. P. (2001). Effects o f swarm size on

cooperative particle swarm optimisers. Proc. of the Genetic and Evolutionary

Computation Conference, San Francisco, USA

Van Laarhoven, P. and Aarts, E.(1987). Simulated Annealing: Theory and

Applications. Kluwer Academic Publishers.

Wang, Y.S., Griffiths, B.J., Wilkie, B.A. (1996). A novel system for coloured object

recognition, Computers in Industry, 32(1), pp. 69-77.

Wilkinson, R., Geist, J., Janet, S., Grother, P., Burges, C., Creecy, R., Hammond, B.,

Hull, J., Larsen, N., Vogl, T., and Wilson, C. (1992). The first census optical

character recognition systems conference. Technical Report NISTIR 4912,

National Institute o f Standards and Technology (NIST), Gaithersburg, USA.

Wilkinson, R. (1992). Handprinted segmented characters database. Technical Report

Test Database 1, TST1, National Institute of Standards and Technology, April.

Yao, X. (1997). Global optimisation by evolutionary algorithms, Proc. of the Second

Aizu International Symposium on Parallel Algorithm/Architecture Synthesis (pAs-

97), Aizu-Wakamatsu, Japan, 17-21 March, IEEE Computer Society Press,

pp.282-291.

191

Yasuda, K., Ide, A. and Iwasaki, N.(2003). Adaptive Particle Swarm Optimization. In

Proceedings o f the IEEE International Conference on Systems, Man, and

Cybernetics, vol. 2, pp. 1554-1559.

Yee, P. and Coghill, G. (2004). Weightless Neural Networks: A Comparison Between

the Discriminator and the Deterministic Adaptive RAM Network. Knowledge-

Based Intelligent Information and Engineering Systems, 8th International

Conference, KES 2004, Wellington, New Zealand, September 20-25, Proceedings,

part II, pp. 319-328.

Yusta, I., Velasco, F. and Herrero, J.M., (1998). Anomaly threshold estimation and

application to lithogeochemical exploration in Lower Cretaceous Zn-Pb carbonate-

hosted deposits, Northern Spain. Applied Geochemistry, 13 (4), pp.421-439.

192

Appendix A
Publications arising from this work

Journal Paper (Refereed)

• M. A. H. B. Azhar, F. Deravi and K. R. Dimond. (2008). “Particle Swarm

Intelligence to Optimise the Learning of N-tuples”, to be appeared in the

Journal of Intelligent System with a theme on “Cybernetic systems: Fuzzy,

neural and evolutionary computing approaches”, ISSN: 0334-1860.

Award Winning Paper (Refereed)

• M. A. FI. B. Azhar and K. R. Dimond. (2004). “Using Particle Swarm with

Self-Organized Criticality to Optimize Mapping in N-tuple Networks” IEEE

SMC UK-RI 3rd Workshop on Intelligent Cybernetic Systems (JCS’04), 7-8

September, 2004, University of Ulster at Magee, Londonderry, UK. (Best

Paper Award with Financial Prize).

Conference Papers (Refereed)

• M. A. H. B. Azhar, F. Deravi and K. R. Dimond. (2008). Criticality

Dispersion in Swarms to Optimize N-tuples, Genetic and Evolutionary

Computation Conference (GECCO 2008), July 12-16, Atlanta, Georgia, USA.

• M. A. H. B. Azhar, F. Deravi and K. R. Dimond. (2006). Convergence of

Particle Swarm and GA to Optimize N-tuples, July 10-12

Proceedings of 6th International Conference on Recent Advances in Soft

Computing (RASC2006), pp. 103-108, University of Kent, Canterbury, UK.

193

• M. A. H. B. Azhar, F.Deravi and K. R. Dimond. (2005). Relative

Performances of Swarm Intelligence and Genetic Algorithm to Select Better

N-tuples, IEEE SMC UK-R1 4lh Conference on Applied Cybernetics,

(AC2005). September 7-8, pp. 111-116, Birley Lecture Theatre, City

University London, United Kingdom.

• M. A. H. B. Azhar and K. R. Dimond. (2004). Hybridizing Particle Swarm

with Nearest Neighbour Interactions and Self-Organised Criticality to

Optimize Training of N-tuples, The 5th International Conference on Recent

Advances in Soft Computing (RASC 2004), Nottingham, 16-18 December,

United Kingdom.

• M. A. H. B. Azhar and K. R. Dimond. (2004). A Stochastic Search Algorithm

to Optimize an N-tuple Classifier by Selecting Its Inputs, The International

Conference on Image Analysis and Recognition (ICIAR 2004), Springer-

Verlag, September 29 - October 1, Porto, Portugal.

194

Appendix B
Handwriting Sample Form in NIST

Following is an example HSF image file located in the CD-ROM distributed by

NIST. All fields except the first line in such HSF forms were segmented by NIST.

C tT V S T A T E Z i f

/■We«, ¿f//y A ft f 'f f 'S 'Z
T b » fcumpir of feixt&KtüHtg v . b*u?ig §S*t uM; & testing fompote-r r^c^-giuNor* a f fcwui jmiHed riu r i^ r

usd fetters Pfea** jiïsnt the fcifowißg itwwNWie** »& the be**** that n$pti*c fcw4i*r
0 1 3 3 4 ________ O I 3 3 t f t f t ? * 9 __ __ ft I ? i H S $ 7 g 9_______

(S/p j v ' i ' i ?i 9 Q/<? 3
ÏTSÎ

wo?s ?

pie 1er print tbe foliowmg text in tbe bcx below
We, the Feopk ol tb* United State*, m order to form * more perfect Union, establish J net ire, instixe dorm>t
TnutguiLt), provide for tbe soron*» Defeoae. prœnott the genera! Welfare, nod «erne* the of Ubcrcj 1
ourerjv*» end dot poeteirity, do nrdua nod eaiatdtth l i a CONSTITUTION foe tbe United Sint«* of Amer«,t

iv-e, -tTno, p+cf/*r cy 1-**- l)ni f -c cf 3 7 V y-w'iT / J ri. fa
■formai m o r-e p o p f « e + Q$nc>ri{ i s f « h I f S h ^ T u S + i C er.,
} v t 5 o ^ ^ p l â m e - ^ - i i C ”] " r a c i c f a i I I P rci> <à « . A - V t « * . .

e o m m o n •+*•* a, <f r. « f u L \PiltV*
a n ' t $<G.UY'-e. £ \ * *>*5/ n°i $ o f / * , j b P r " i y ~ho o ^ r ~

Sei o *** 5 CL'Sf* C-“ w ir p>£s 5 +■«¥*• v Ty t (X 5 i i*a|a,i ¿x o<y
ösT « . toiiSH A-ktJs 0 .o*jSTiTi>TiOTNd F ^ r Ai - t e
O A t V-e o| 5 Va e 0 £ f i f n e f i t ä r . .

195

