202 research outputs found

    Process, structural, and outcome quality indicators to support perioperative opioid stewardship: a rapid review

    Get PDF
    Opioids are effective analgesics but can cause harm. Opioid stewardship is key to ensuring that opioids are used effectively and safely. There is no agreed set of quality indicators relating to the use of opioids perioperatively. This work is part of the Yorkshire Cancer Research Bowel Cancer Quality Improvement programme and aims to develop useful quality indicators for the improvement of care and patient outcomes at all stages of the perioperative journey. A rapid review was performed to identify original research and reviews in which quality indicators for perioperative opioid use are described. A data tool was developed to enable reliable and reproducible extraction of opioid quality indicators. A review of 628 abstracts and 118 full-text publications was undertaken. Opioid quality indicators were identified from 47 full-text publications. In total, 128 structure, process and outcome quality indicators were extracted. Duplicates were merged, with the final extraction of 24 discrete indicators. These indicators are based on five topics: patient education, clinician education, pre-operative optimization, procedure, and patient-specific prescribing and de-prescribing and opioid-related adverse drug events. The quality indicators are presented as a toolkit to contribute to practical opioid stewardship. Process indicators were most commonly identified and contribute most to quality improvement. Fewer quality indicators relating to intraoperative and immediate recovery stages of the patient journey were identified. An expert clinician panel will be convened to agree which of the quality indicators identified will be most valuable in our region for the management of patients undergoing surgery for bowel cancer

    Experimentation on Analogue Models

    Get PDF
    Summary Analogue models are actual physical setups used to model something else. They are especially useful when what we wish to investigate is difficult to observe or experiment upon due to size or distance in space or time: for example, if the thing we wish to investigate is too large, too far away, takes place on a time scale that is too long, does not yet exist or has ceased to exist. The range and variety of analogue models is too extensive to attempt a survey. In this article, I describe and discuss several different analogue model experiments, the results of those model experiments, and the basis for constructing them and interpreting their results. Examples of analogue models for surface waves in lakes, for earthquakes and volcanoes in geophysics, and for black holes in general relativity, are described, with a focus on examining the bases for claims that these analogues are appropriate analogues of what they are used to investigate. A table showing three different kinds of bases for reasoning using analogue models is provided. Finally, it is shown how the examples in this article counter three common misconceptions about the use of analogue models in physics

    Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses

    Get PDF
    The sidereal time dependence of MiniBooNE electron neutrino and anti-electron neutrino appearance data are analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov test shows both the electron neutrino and anti-electron neutrino appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the electron neutrino appearance data prefer a sidereal time-independent solution, and the anti-electron neutrino appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10E-20 GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for muon neutrino to electron neutrino and anti-muon neutrino to anti-electron neutrino oscillations. The fit values and limits of combinations of SME coefficients are provided.Comment: 14 pages, 3 figures, and 2 tables, submitted to Physics Letters

    Perspectives in Global Helioseismology, and the Road Ahead

    Get PDF
    We review the impact of global helioseismology on key questions concerning the internal structure and dynamics of the Sun, and consider the exciting challenges the field faces as it enters a fourth decade of science exploitation. We do so with an eye on the past, looking at the perspectives global helioseismology offered in its earlier phases, in particular the mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer datasets coupled with new developments in analysis, have altered, refined, and changed some of those perspectives, and opened others that were not previously available for study. We finish by discussing outstanding challenges and questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore