53 research outputs found

    An intuitive surgical handle design for robotic neurosurgery.

    Get PDF
    PURPOSE: The expanded endoscopic endonasal approach, a representative example of keyhole brain surgery, allows access to the pituitary gland and surrounding areas through the nasal and sphenoid cavities. Manipulating rigid instruments through these constrained spaces makes this approach technically challenging, and thus, a handheld robotic instrument could expand the surgeon's capabilities. In this study, we present an intuitive handle prototype for such a robotic instrument. METHODS: We have designed and fabricated a surgical instrument handle prototype that maps the surgeon's wrist directly to the robot joints. To alleviate the surgeon's wrist of any excessive strain and fatigue, the tool is mounted on the surgeon's forearm, making it parallel with the instrument's shaft. To evaluate the handle's performance and limitations, we constructed a surgical task simulator and compared our novel handle with a standard neurosurgical tool, with the tasks being performed by a consultant neurosurgeon. RESULTS: While using the proposed handle, the surgeon's average success rate was [Formula: see text], compared to [Formula: see text] when using a conventional tool. Additionally, the surgeon's body posture while using the suggested prototype was deemed acceptable by the Rapid Upper Limb Assessment ergonomic survey, while early results indicate the absence of a learning curve. CONCLUSIONS: Based on these preliminary results, the proposed handle prototype could offer an improvement over current neurosurgical tools and procedural ergonomics. By redirecting forces applied during the procedure to the forearm of the surgeon, and allowing for intuitive surgeon wrist to robot-joints movement mapping without compromising the robotic end effector's expanded workspace, we believe that this handle could prove a substantial step toward improved neurosurgical instrumentation

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda

    Computer-assisted tomography for studies of an Albaqualf

    Get PDF
    Na busca de técnicas mais apuradas para a determinação e avaliação de parâmetros físicos do solo com aplicabilidade em várzeas, vem se destacando a tomografia computadorizada, por medir a densidade e a umidade com boa sensibilidade e alta resolução espacial. O presente trabalho teve como objetivo descrever aspectos e procedimentos da calibração de um minitomógrafo de raios-X e gama para estudo da densidade e umidade de um Planossolo no Rio Grande do Sul, bem como estabelecer parâmetros estatísticos para sua adequada utilização. A calibração do minitomógrafo foi obtida pela regressão linear entre as unidades tomográficas (UT), apresentadas pelo programa de reconstrução de imagem, e os coeficientes de atenuação linear (µl, cm-1), medidos por transmissão direta de raios gama, em amostras dos horizontes A e B do Planossolo, água destilada, benzina e alumínio. Para as medidas de transmissão direta de radiação utilizaram-se recipientes com água destilada, benzina, solo e Al, obtendo-se as seguintes fórmulas para o cálculo da densidade do solo no horizonte A: Ds = [(UT/986,16)-(0,200xq)]/0,267; e no horizonte B: Ds = [(UT/986,16)-(0,200xq)]/0,297, em que UT é o valor médio de UT em cada linha e q é a umidade volumétrica da amostra de solo, em m3 m-3. Com as configurações obtidas, verificou-se variabilidade média de 2,74% e 0,73%, respectivamente, em termos de homogeneidade e repetibilidade. Os erros atribuídos ao equipamento são de 0,051 e 0,046 Mg m-3, respectivamente, nos horizontes A e B, revelando precisão e adaptabilidade no emprego da técnica em estudos do Planossolo._________________________________________________________________________________ ABSTRACT: In order to find better techniques to evaluate the soil physical parameters applied to lowland soils, the computerized tomography has been used to measure soil density and water content with accuracy and high spatial resolution. This work was carried out in order to describe features and calibration procedures of a computerized minitomographer using X-ray and gama-rays as sources of radiation and to establish suitable statistical parameters on the study of soil bulk density and water content in a Planosol (Albaqualf) from Rio Grande do Sul State, Brazil. The minitomographer calibration was obtained from the linear regression equation among the tomography's unities (TU) presented by the image reconstruction program and the linear attenuation coefficient (µl, cm-1), by the measurement of direct transmission of g-rays as source of radiation in soil samples from A and B horizons, distilled water, benzin and aluminum. In order to get measures of the direct radiation transmission, containers with distilled water, benzin, soil and aluminum were used to obtain the following equations to calculate soil bulk density in the A horizon: Ds = [(TU/986.16)-(0.200xq)]/0.267 and in the B horizon: Ds = [(TU/986.16)-(0.200xq)]/0.297, where TU is the mean value in the line and q is the soil volumetric water content (m3 m-3). The obtained configurations allowed to attain average variabilities of 2.74% and 0.73% for homogeneity and repeatability, respectively. The expected errors related to the equipment are 0.051 and 0.046 Mg m-3, to the A and B horizons, respectively. The results showed the technique accuracy and adaptability in the studies of the physical characteristics of a Planosol

    Towards the Development and Evaluation of a Handle Prototype for a Handheld Robotic Neurosurgical Instrument

    Get PDF
    The purpose of this study is to develop an ergonomic handle that is aimed to be used as the handle of a handheld robotic instrument intended for the Expanded Endoscopic Endonasal Approach. An ergonomically designed handle prototype was developed employing a joystick to move the robot joints and a trigger for the opening and closing of the gripper. To account for different hand sizes and to make sure that the instrument at rest is maintained by a hand that is also kept at rest to minimize fatigue, we introduced a 'rotating body' that is modifiable and can be rotated into the position that each surgeon feels more comfortable with. This prototype was then paired with a CoppeliaSim simulator that was developed during this study. The simulated robot in this environment is an end-effector manufactured in previous work for this robotic instrument. Using the handle prototype, a 'ring-transfer' task was carried out. Expanding on this preliminary work, more handles and simulated tasks will be developed in the future and evaluated by clinical experts, so that the most appropriate handle for the robotic neurosurgical instrument is chosen

    An intuitive surgical handle design for robotic neurosurgery

    Get PDF
    Purpose The expanded endoscopic endonasal approach, a representative example of keyhole brain surgery, allows access to the pituitary gland and surrounding areas through the nasal and sphenoid cavities. Manipulating rigid instruments through these constrained spaces makes this approach technically challenging, and thus, a handheld robotic instrument could expand the surgeon’s capabilities. In this study, we present an intuitive handle prototype for such a robotic instrument. Methods We have designed and fabricated a surgical instrument handle prototype that maps the surgeon’s wrist directly to the robot joints. To alleviate the surgeon’s wrist of any excessive strain and fatigue, the tool is mounted on the surgeon’s forearm, making it parallel with the instrument’s shaft. To evaluate the handle’s performance and limitations, we constructed a surgical task simulator and compared our novel handle with a standard neurosurgical tool, with the tasks being performed by a consultant neurosurgeon. Results While using the proposed handle, the surgeon’s average success rate was 80%, compared to 41% when using a conventional tool. Additionally, the surgeon’s body posture while using the suggested prototype was deemed acceptable by the Rapid Upper Limb Assessment ergonomic survey, while early results indicate the absence of a learning curve. Conclusions Based on these preliminary results, the proposed handle prototype could offer an improvement over current neurosurgical tools and procedural ergonomics. By redirecting forces applied during the procedure to the forearm of the surgeon, and allowing for intuitive surgeon wrist to robot-joints movement mapping without compromising the robotic end effector’s expanded workspace, we believe that this handle could prove a substantial step toward improved neurosurgical instrumentation
    corecore