139 research outputs found
Evolution of cooperation without reciprocity
A long-standing problem in biological and social sciences is to understand the conditions required for the emergence and maintenance of cooperation in evolving populations. For many situations, kin selection(1) is an adequate explanation, although kin-recognition may still be a problem. Explanations of cooperation between non-kin include continuing interactions that provide a shadow of the future (that is, the expectation of an ongoing relationship) that can sustain reciprocity(2-4), possibly supported by mechanisms to bias interactions such as embedding the agents in a two-dimensional space(4-6) or other context-preserving networks(7). Another explanation, indirect reciprocity(8), applies when benevolence to one agent increases the chance of receiving help from others. Here we use computer simulations to show that cooperation can arise when agents donate to others who are sufficiently similar to themselves in some arbitrary characteristic. Such a characteristic, or 'tag', can be a marking, display, or other observable trait. Tag-based donation can lead to the emergence of cooperation among agents who have only rudimentary ability to detect environmental signals and, unlike models of direct(3,4) or indirect reciprocity(9,10), no memory of past encounters is required.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62686/1/414441a0.pd
Evolutionary instability of Zero Determinant strategies demonstrates that winning isn't everything
Zero Determinant (ZD) strategies are a new class of probabilistic and
conditional strategies that are able to unilaterally set the expected payoff of
an opponent in iterated plays of the Prisoner's Dilemma irrespective of the
opponent's strategy, or else to set the ratio between a ZD player's and their
opponent's expected payoff. Here we show that while ZD strategies are weakly
dominant, they are not evolutionarily stable and will instead evolve into less
coercive strategies. We show that ZD strategies with an informational advantage
over other players that allows them to recognize other ZD strategies can be
evolutionarily stable (and able to exploit other players). However, such an
advantage is bound to be short-lived as opposing strategies evolve to
counteract the recognition.Comment: 14 pages, 4 figures. Change in title (again!) to comply with Nature
Communications requirements. To appear in Nature Communication
Cooperation and Contagion in Web-Based, Networked Public Goods Experiments
A longstanding idea in the literature on human cooperation is that
cooperation should be reinforced when conditional cooperators are more likely
to interact. In the context of social networks, this idea implies that
cooperation should fare better in highly clustered networks such as cliques
than in networks with low clustering such as random networks. To test this
hypothesis, we conducted a series of web-based experiments, in which 24
individuals played a local public goods game arranged on one of five network
topologies that varied between disconnected cliques and a random regular graph.
In contrast with previous theoretical work, we found that network topology had
no significant effect on average contributions. This result implies either that
individuals are not conditional cooperators, or else that cooperation does not
benefit from positive reinforcement between connected neighbors. We then tested
both of these possibilities in two subsequent series of experiments in which
artificial seed players were introduced, making either full or zero
contributions. First, we found that although players did generally behave like
conditional cooperators, they were as likely to decrease their contributions in
response to low contributing neighbors as they were to increase their
contributions in response to high contributing neighbors. Second, we found that
positive effects of cooperation were contagious only to direct neighbors in the
network. In total we report on 113 human subjects experiments, highlighting the
speed, flexibility, and cost-effectiveness of web-based experiments over those
conducted in physical labs
Transition from reciprocal cooperation to persistent behaviour in social dilemmas at the end of adolescence.
While human societies are extraordinarily cooperative in comparison with other social species, the question of why we cooperate with unrelated individuals remains open. Here we report results of a lab-in-the-field experiment with people of different ages in a social dilemma. We find that the average amount of cooperativeness is independent of age except for the elderly, who cooperate more, and a behavioural transition from reciprocal, but more volatile behaviour to more persistent actions towards the end of adolescence. Although all ages react to the cooperation received in the previous round, young teenagers mostly respond to what they see in their neighbourhood regardless of their previous actions. Decisions then become more predictable through midlife, when the act of cooperating or not is more likely to be repeated. Our results show that mechanisms such as reciprocity, which is based on reacting to previous actions, may promote cooperation in general, but its influence can be hindered by the fluctuating behaviour in the case of children
Generosity Pays in the Presence of Direct Reciprocity: A Comprehensive Study of 2×2 Repeated Games
By applying a technique previously developed to study ecosystem assembly [Capitán et al., Phys. Rev. Lett. 103, 168101 (2009)] we study the evolutionary stable strategies of iterated 22 games. We focus on memory-one strategies, whose probability to play a given action depends on the actions of both players in the previous time step. We find the asymptotically stable populations resulting from all possible invasions of any known stable population. The results of this invasion process are interpreted as transitions between different populations that occur with a certain probability. Thus the whole process can be described as a Markov chain whose states are the different stable populations. With this approach we are able to study the whole space of symmetric 22 games, characterizing the most probable results of evolution for the different classes of games. Our analysis includes quasi-stationary mixed equilibria that are relevant as very long-lived metastable states and is compared to the predictions of a fixation probability analysis. We confirm earlier results on the success of the Pavlov strategy in a wide range of parameters for the iterated Prisoner's Dilemma, but find that as the temptation to defect grows there are many other possible successful strategies. Other regions of the diagram reflect the equilibria structure of the underlying one-shot game, albeit often some non-expected strategies arise as well. We thus provide a thorough analysis of iterated 22 games from which we are able to extract some general conclusions. Our most relevant finding is that a great deal of the payoff parameter range can still be understood by focusing on win-stay, lose-shift strategies, and that very ambitious ones, aspiring to obtaining always a high payoff, are never evolutionary stable
Increased costs reduce reciprocal helping behaviour of humans in a virtual evacuation experiment
Altruistic behaviour is widespread and highly developed in humans and can also be found in some animal species. It has been suggested that altruistic tendencies can depend on costs, benefits and context. Here, we investigate the changes in the occurrence of helping behaviour in a computer-based experiment that simulates an evacuation from a building exploring the effect of varying the cost to help. Our findings illuminate a number of key mechanistic aspects of human decision-making about whether to help or not. In a novel situation where it is difficult to assess the risks associated with higher costs, we reproduce the finding that increasing costs reduce helping and find that the reduction in the frequency of helping behaviour is gradual rather than a sudden transition for a threshold cost level. Interestingly, younger and male participants were more likely to help. We provide potential explanations for this result relating to the nature of our experiment. Finally, we find no evidence that participants in our experiment plan ahead over two consecutive, inter-dependent helping opportunities when conducting cost-benefit trade-offs in spontaneous decisions. We discuss potential applications of our findings to research into decision-making during evacuations
Correlates of Cooperation in a One-Shot High-Stakes Televised Prisoners' Dilemma
Explaining cooperation between non-relatives is a puzzle for both evolutionary biology and the social sciences. In humans, cooperation is often studied in a laboratory setting using economic games such as the prisoners' dilemma. However, such experiments are sometimes criticized for being played for low stakes and by misrepresentative student samples. Golden balls is a televised game show that uses the prisoners' dilemma, with a diverse range of participants, often playing for very large stakes. We use this non-experimental dataset to investigate the factors that influence cooperation when “playing” for considerably larger stakes than found in economic experiments. The game show has earlier stages that allow for an analysis of lying and voting decisions. We found that contestants were sensitive to the stakes involved, cooperating less when the stakes were larger in both absolute and relative terms. We also found that older contestants were more likely to cooperate, that liars received less cooperative behavior, but only if they told a certain type of lie, and that physical contact was associated with reduced cooperation, whereas laughter and promises were reliable signals or cues of cooperation, but were not necessarily detected
Growth dynamics and the evolution of cooperation in microbial populations
Microbes providing public goods are widespread in nature despite running the
risk of being exploited by free-riders. However, the precise ecological factors
supporting cooperation are still puzzling. Following recent experiments, we
consider the role of population growth and the repetitive fragmentation of
populations into new colonies mimicking simple microbial life-cycles.
Individual-based modeling reveals that demographic fluctuations, which lead to
a large variance in the composition of colonies, promote cooperation. Biased by
population dynamics these fluctuations result in two qualitatively distinct
regimes of robust cooperation under repetitive fragmentation into groups.
First, if the level of cooperation exceeds a threshold, cooperators will take
over the whole population. Second, cooperators can also emerge from a single
mutant leading to a robust coexistence between cooperators and free-riders. We
find frequency and size of population bottlenecks, and growth dynamics to be
the major ecological factors determining the regimes and thereby the
evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure
Induced Cooperation to Access a Shareable Reward Increases the Hierarchical Segregation of Wild Vervet Monkeys
Until now cooperation experiments in primates have paid little attention to how cooperation can emerge and what effects are produced on the structure of a social group in nature. I performed field experiments with three groups of wild vervet monkeys in South Africa. I induced individuals to repeatedly approach and operate food containers. At least two individuals needed to operate the containers in order to get the reward. The recurrent partner associations observed before the experiment only partly predicted the forming of cooperative partnerships during the experiment. While most of the tested subjects cooperated with other partners, they preferred to do so with specific combinations of individuals and they tended not to mix with other group members outside these preferred partnerships. Cooperation therefore caused the relatively homogeneous networks I observed before the experiment to differentiate. Similar to a matching market, the food sharing partners selected each other limiting their choice. Interestingly neither sex nor age classes explained the specific partner matching. Kinship could not explain it either. Rather, higher ranking individuals cooperated with other higher ranking individuals, and lower ranking also matched among the same rank. This study reveals the key role dominance rank plays when food resources are patchy and can only be accessed through sharing with other individuals
Network Homophily and the Evolution of the Pay-It-Forward Reciprocity
The pay-it-forward reciprocity is a type of cooperative behavior that people who have benefited from others return favors to third parties other than the benefactors, thus pushing forward a cascade of kindness. The phenomenon of the pay-it-forward reciprocity is ubiquitous, yet how it evolves to be part of human sociality has not been fully understood. We develop an evolutionary dynamics model to investigate how network homophily influences the evolution of the pay-it-forward reciprocity. Manipulating the extent to which actors carrying the same behavioral trait are linked in networks, the computer simulation model shows that strong network homophily helps consolidate the adaptive advantage of cooperation, yet introducing some heterophily to the formation of network helps advance cooperation's scale further. Our model enriches the literature of inclusive fitness theory by demonstrating the conditions under which cooperation or reciprocity can be selected for in evolution when social interaction is not confined exclusively to relatives
- …