19 research outputs found

    Personalized assessment of the cumulative complication risk of the atrial fibrillation ablation track: The AF-TRACK calculator

    Full text link
    Atrial fibrillation (AF) ablation strategy is associated with a non-negligible risk of complications and often requires repeat procedures (AF ablation track), implying repetitive exposure to procedural risk.The purpose of this study was to develop and validate a model to estimate individualized cumulative risk of complications in patients undergoing the AF ablation track (Atrial Fibrillation TRAck Complication risK [AF-TRACK] calculator).The model was derived from a multicenter cohort including 3762 AF ablation procedures in 2943 patients. A first regression model was fitted to predict the propensity for repeat ablation. The AF-TRACK calculator computed the risk of AF ablation track complications, considering the propensity for repeat ablation. Internal (cross-validation) and external (independent cohort) validation were assessed for discrimination capacity (area under the curve [AUC]) and goodness of fit (Hosmer-Lemeshow [HL] test).Complications (N = 111) occurred in 3.7% of patients (2.9% of procedures). Predictors included female sex, heart failure, sleep apnea syndrome, and repeat procedures. The model showed fair discrimination capacity to predict complications (AUC 0.61 [0.55-0.67]) and likelihood of repeat procedure (AUC 0.62 [0.60-0.64]), with good calibration (HL χ2 12.5; P = .13). The model maintained adequate discrimination capacity (AUC 0.67 [0.57-0.77]) and calibration (HL χ2 5.6; P = .23) in the external validation cohort. The validated model was used to create the Web-based AF-TRACK calculator.The proposed risk model provides individualized estimates of the cumulative risk of complications of undergoing the AF ablation track. The AF-TRACK calculator is a validated, easy-to-use, Web-based clinical tool to calibrate the risk-to-benefit ratio of this treatment strategy.© 2022 Heart Rhythm Society. Published by Elsevier Inc

    Diagnosis and management of pericardial effusion

    No full text
    Pericardial effusion is a common finding in everyday clinical practice. The first challenge to the clinician is to try to establish an etiologic diagnosis. Sometimes, the pericardial effusion can be easily related to a known underlying disease, such as acute myocardial infarction, cardiac surgery, end-stage renal disease or widespread metastatic neoplasm. When no obvious cause is apparent, some clinical findings can be useful to establish a diagnosis of probability. The presence of acute inflammatory signs (chest pain, fever, pericardial friction rub) is predictive for acute idiopathic pericarditis irrespective of the size of the effusion or the presence or absence of tamponade. Severe effusion with absence of inflammatory signs and absence of tamponade is predictive for chronic idiopathic pericardial effusion, and tamponade without inflammatory signs for neoplastic pericardial effusion. Epidemiologic considerations are very important, as in developed countries acute idiopathic pericarditis and idiopathic pericardial effusion are the most common etiologies, but in some underdeveloped geographic areas tuberculous pericarditis is the leading cause of pericardial effusion. The second point is the evaluation of the hemodynamic compromise caused by pericardial fluid. Cardiac tamponade is not an “all or none” phenomenon, but a syndrome with a continuum of severity ranging from an asymptomatic elevation of intrapericardial pressure detectable only through hemodynamic methods to a clinical tamponade recognized by the presence of dyspnea, tachycardia, jugular venous distension, pulsus paradoxus and in the more severe cases arterial hypotension and shock. In the middle, echocardiographic tamponade is recognized by the presence of cardiac chamber collapses and characteristic alterations in respiratory variations of mitral and tricuspid flow. Medical treatment of pericardial effusion is mainly dictated by the presence of inflammatory signs and by the underlying disease if present. Pericardial drainage is mandatory when clinical tamponade is present. In the absence of clinical tamponade, examination of the pericardial fluid is indicated when there is a clinical suspicion of purulent pericarditis and in patients with underlying neoplasia. Patients with chronic massive idiopathic pericardial effusion should also be submitted to pericardial drainage because of the risk of developing unexpected tamponade. The selection of the pericardial drainage procedure depends on the etiology of the effusion. Simple pericardiocentesis is usually sufficient in patients with acute idiopathic or viral pericarditis. Purulent pericarditis should be drained surgically, usually through subxiphoid pericardiotomy. Neoplastic pericardial effusion constitutes a more difficult challenge because reaccumulation of pericardial fluid is a concern. The therapeutic possibilities include extended indwelling pericardial catheter, percutaneous pericardiostomy and intrapericardial instillation of antineoplastic and sclerosing agents. Massive chronic idiopathic pericardial effusions do not respond to medical treatment and tend to recur after pericardiocentesis, so wide anterior pericardiectomy is finally necessary in many cases

    Inappropriate sinus tachycardia in post-COVID-19 syndrome

    Get PDF
    Inappropriate sinus tachycardia (IST) is a common observation in patients with post-COVID-19 syndrome (PCS) but has not yet been fully described to date. To investigate the prevalence and the mechanisms underlying IST in a prospective population of PCS patients. Consecutive patients admitted to the PCS Unit between June and December 2020 with a resting sinus rhythm rate ≥ 100 bpm were prospectively enrolled in this study and further examined by an orthostatic test, 2D echocardiography, 24-h ECG monitoring (heart rate variability was a surrogate for cardiac autonomic activity), quality-of-life and exercise capacity testing, and blood sampling. To assess cardiac autonomic function, a 2:1:1 comparative sub-analysis was conducted against both fully recovered patients with previous SARS-CoV-2 infection and individuals without prior SARS-CoV-2 infection. Among 200 PCS patients, 40 (20%) fulfilled the diagnostic criteria for IST (average age of 40.1 ± 10 years, 85% women, 83% mild COVID-19). No underlying structural heart disease, pro-inflammatory state, myocyte injury, or hypoxia were identified. IST was accompanied by a decrease in most heart rate variability parameters, especially those related to cardiovagal tone: pNN50 (cases 3.2 ± 3 vs. recovered 10.5 ± 8 vs. non-infected 17.3 ± 10; p < 0.001) and HF band (246 ± 179 vs. 463 ± 295 vs. 1048 ± 570, respectively; p < 0.001). IST is prevalent condition among PCS patients. Cardiac autonomic nervous system imbalance with decreased parasympathetic activity may explain this phenomenon

    Image_2_Electrophysiological effects of adipose graft transposition procedure (AGTP) on the post-myocardial infarction scar: A multimodal characterization of arrhythmogenic substrate.JPEG

    Get PDF
    ObjectiveTo assess the arrhythmic safety profile of the adipose graft transposition procedure (AGTP) and its electrophysiological effects on post-myocardial infarction (MI) scar.BackgroundMyocardial repair is a promising treatment for patients with MI. The AGTP is a cardiac reparative therapy that reduces infarct size and improves cardiac function. The impact of AGTP on arrhythmogenesis has not been addressed.MethodsMI was induced in 20 swine. Contrast-enhanced magnetic resonance (ce-MRI), electrophysiological study (EPS), and left-ventricular endocardial high-density mapping were performed 15 days post-MI. Animals were randomized 1:1 to AGTP or sham-surgery group and monitored with ECG-Holter. Repeat EPS, endocardial mapping, and ce-MRI were performed 30 days post-intervention. Myocardial SERCA2, Connexin-43 (Cx43), Ryanodine receptor-2 (RyR2), and cardiac troponin-I (cTnI) gene and protein expression were evaluated.ResultsThe AGTP group showed a significant reduction of the total infarct scar, border zone and dense scar mass by ce-MRI (p = 0.04), and a decreased total scar and border zone area in bipolar voltage mapping (p ConclusionAGTP is a safe reparative therapy in terms of arrhythmic risk and provides additional protective effect against adverse electrophysiological remodeling in ischemic heart disease.</p
    corecore