55 research outputs found

    Physiological and pathological aspects of Aβ in iron homeostasis via 5'UTR in the APP mRNA and the therapeutic use of iron-chelators

    Get PDF
    Many studies have highlighted the pathological involvement of iron accumulation and iron-related oxidative stress (OS) in Alzheimer's disease (AD). Iron was further demonstrated to modulate expression of the Alzheimer's amyloid precursor holo-protein (APP) by a mechanism similar to that of regulation of ferritin-L and -H mRNA translation through an iron-responsive element (IRE) in their 5' untranslated regions (UTRs). Here, we discuss two aspects of the link between iron and AD, in relation to the recently discovered IRE in the 5'UTR of APP mRNA. The first is the physiological aspect: a compensatory neuroprotective response of amyloid-β protein (Aβ) in reducing iron-induced neurotoxicity. Thus, given that Aβ possesses iron chelation sites, it is hypothesized that OS-induced intracellular iron may stimulate APP holo-protein translation (via the APP 5'UTR) and subsequently the generation of its cleavage product, Aβ, as a compensatory response that eventually reduces OS. The second is the pathological aspect: iron chelating compounds target the APP 5'UTR and possess the capacity to reduce APP translation, and subsequently Aβ levels, and thus represent molecules with high potential in the development of drugs for the treatment of AD

    Why Do We Need Multifunctional Neuroprotective and Neurorestorative Drugs for Parkinson's and Alzheimer's Diseases as Disease Modifying Agents

    Get PDF
    Parkinson's disease (PD) and Alzheimer's Disease (AD) are severe neurodegenerative disorders, with no drugs that are currently approved to prevent the neuronal cell loss characteristic in brains of patients suffering from PD and AD and all drug treatment are synptomactic. Due to the complex pathophysiology, including a cascade of neurotoxic molecular events that results in neuronal death and predisposition to depression and eventual dementia and etiology of these disorders, an innovative approach towards neuroprotection or neurorestoration (neurorescue) may be the development and use of multifunctional pharmaceuticals. Such drugs target an array of pathological pathways, each of which is believed to contribute to the cascades that ultimately lead to neuronal cell death. In this short review, we discuss examples of novel multifunctional ligands that may have potential as neuroprotective-neurorestorative therapeutics in PD and AD. The compounds discussed originate from synthetic chemistry as well as from natural sources

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore