803 research outputs found

    Order-of-magnitude speedup for steady states and traveling waves via Stokes preconditioning in Channelflow and Openpipeflow

    Full text link
    Steady states and traveling waves play a fundamental role in understanding hydrodynamic problems. Even when unstable, these states provide the bifurcation-theoretic explanation for the origin of the observed states. In turbulent wall-bounded shear flows, these states have been hypothesized to be saddle points organizing the trajectories within a chaotic attractor. These states must be computed with Newton's method or one of its generalizations, since time-integration cannot converge to unstable equilibria. The bottleneck is the solution of linear systems involving the Jacobian of the Navier-Stokes or Boussinesq equations. Originally such computations were carried out by constructing and directly inverting the Jacobian, but this is unfeasible for the matrices arising from three-dimensional hydrodynamic configurations in large domains. A popular method is to seek states that are invariant under numerical time integration. Surprisingly, equilibria may also be found by seeking flows that are invariant under a single very large Backwards-Euler Forwards-Euler timestep. We show that this method, called Stokes preconditioning, is 10 to 50 times faster at computing steady states in plane Couette flow and traveling waves in pipe flow. Moreover, it can be carried out using Channelflow (by Gibson) and Openpipeflow (by Willis) without any changes to these popular spectral codes. We explain the convergence rate as a function of the integration period and Reynolds number by computing the full spectra of the operators corresponding to the Jacobians of both methods.Comment: in Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, ed. Alexander Gelfgat (Springer, 2018

    Testing the isotropy of the Dark Energy Survey's extreme trans-Neptunian objects

    Get PDF
    We test whether the population of "extreme" trans-Neptunian objects (eTNOs) detected in the Y4 Dark Energy Survey (DES) data exhibit azimuthal asymmetries which might be evidence of gravitational perturbations from an unseen super-Earth in a distant orbit. By rotating the orbits of the detected eTNOs, we construct a synthetic population which, when subject to the DES selection function, reproduces the detected distribution of eTNOs in the orbital elements a,e,a,e, and ii as well as absolute magnitude HH, but has uniform distributions in mean anomaly MM, longitude of ascending node Ω,\Omega, and argument of perihelion ω.\omega. We then compare the detected distributions in each of Ω,ω,\Omega, \omega, and ϖΩ+ω\varpi\equiv\Omega+\omega to those expected from the isotropic population, using Kuiper's variant of the Kolmogorov-Smirnov test. The three angles are tested for each of 4 definitions of the eTNO population, choosing among a>(150,250)a>(150,250) AU and perihelion q>(30,37)q>(30,37) AU. These choices yield 3--7 eTNOs in the DES Y4 sample. Among the twelve total tests, two have the likelihood of drawing the observed angles from the isotropic population at p250,q>37p250, q>37 AU, and the 4 detections at a>250,q>30a>250, q>30 AU, have Ω\Omega distribution with p=0.03p=0.03 of coming from the isotropic construction, but this is not strong evidence of anisotropy given the 12 different tests. The DES data taken on their own are thus consistent with azimuthal isotropy and do not require a "Planet 9" hypothesis. The limited sky coverage and object count mean, however, that the DES data by no means falsify this hypothesis.Comment: Accepted on PS

    Testing the isotropy of the dark energy Survey's extreme trans-neptunian objects

    Get PDF
    We test whether the population of "extreme"trans-Neptunian objects (eTNOs) detected in the first four years of the Dark Energy Survey (DES Y4) data exhibit azimuthal asymmetries that might be evidence of gravitational perturbations from an unseen super-Earth in a distant orbit. By rotating the orbits of the detected eTNOs, we construct a synthetic population that, when subject to the DES selection function, reproduces the detected distribution of eTNOs in the orbital elements a, e, and i as well as absolute magnitude H, but has uniform distributions in mean anomaly M, longitude of ascending node Ω, and argument of perihelion ω. We then compare the detected distributions in each of Ω, ω, and the longitude of perihelion {equation presented} to those expected from the isotropic population, using Kuiper's variant of the Kolmogorov-Smirnov test. The three angles are tested for each of four definitions of the eTNO population, choosing among a > (150, 250) au and perihelion q > (30, 37) au. These choices yield 3-7 eTNOs in the DES Y4 sample. Among the 12 total tests, two have the likelihood of drawing the observed angles from the isotropic population at p 250 and q > 37 au and the four detections at a > 250 and q > 30 au have a Ω distribution with p ≈ 0.03 coming from the isotropic construction, but this is not strong evidence of anisotropy given the 12 different tests. The DES data taken on their own are thus consistent with azimuthal isotropy and do not require a "Planet 9"hypothesis. The limited sky coverage and object count mean, however, that the DES data by no means falsify this hypothesis

    Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean

    Get PDF
    0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    The Drosophila melanogaster Seminal Fluid Protease “Seminase” Regulates Proteolytic and Post-Mating Reproductive Processes

    Get PDF
    Proteases and protease inhibitors have been identified in the ejaculates of animal taxa ranging from invertebrates to mammals and form a major protein class among Drosophila melanogaster seminal fluid proteins (SFPs). Other than a single protease cascade in mammals that regulates seminal clot liquefaction, no proteolytic cascades (i.e. pathways with at least two proteases acting in sequence) have been identified in seminal fluids. In Drosophila, SFPs are transferred to females during mating and, together with sperm, are necessary for the many post-mating responses elicited in females. Though several SFPs are proteolytically cleaved either during or after mating, virtually nothing is known about the proteases involved in these cleavage events or the physiological consequences of proteolytic activity in the seminal fluid on the female. Here, we present evidence that a protease cascade acts in the seminal fluid of Drosophila during and after mating. Using RNAi to knock down expression of the SFP CG10586, a predicted serine protease, we show that it acts upstream of the SFP CG11864, a predicted astacin protease, to process SFPs involved in ovulation and sperm entry into storage. We also show that knockdown of CG10586 leads to lower levels of egg laying, higher rates of sexual receptivity to subsequent males, and abnormal sperm usage patterns, processes that are independent of CG11864. The long-term phenotypes of females mated to CG10586 knockdown males are similar to those of females that fail to store sex peptide, an important elicitor of long-term post-mating responses, and indicate a role for CG10586 in regulating sex peptide. These results point to an important role for proteolysis among insect SFPs and suggest that protease cascades may be a mechanism for precise temporal regulation of multiple post-mating responses in females

    Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV

    Get PDF
    The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at s=630\sqrt{s} = 630 GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ETE_T) range from 7-49 GeV and have pseudorapidity η<2.5|\eta| < 2.5. This measurement is combined with to previous \D0 result at s=1800\sqrt{s} = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the ETE_T range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001

    <i>KCNV2</i>-associated retinopathy:genotype-phenotype correlations-<i>KCNV2</i> study group report 3

    Get PDF
    Background/aims To investigate genotype–phenotype associations in patients with KCNV2 retinopathy.Methods Review of clinical notes, best-corrected visual acuity (BCVA), molecular variants, electroretinography (ERG) and retinal imaging. Subjects were grouped according to the combination of KCNV2 variants—two loss-of-function (TLOF), two missense (TM) or one of each (MLOF)—and parameters were compared.Results Ninety-two patients were included. The mean age of onset (mean±SD) in TLOF (n=55), TM (n=23) and MLOF (n=14) groups was 3.51±0.58, 4.07±2.76 and 5.54±3.38 years, respectively. The mean LogMAR BCVA (±SD) at baseline in TLOF, TM and MLOF groups was 0.89±0.25, 0.67±0.38 and 0.81±0.35 for right, and 0.88±0.26, 0.69±0.33 and 0.78±0.33 for left eyes, respectively. The difference in BCVA between groups at baseline was significant in right (p=0.03) and left eyes (p=0.035). Mean outer nuclear layer thickness (±SD) at baseline in TLOF, MLOF and TM groups was 37.07±15.20 µm, 40.67±12.53 and 40.38±18.67, respectively, which was not significantly different (p=0.85). The mean ellipsoid zone width (EZW) loss (±SD) was 2051 µm (±1318) for patients in the TLOF, and 1314 µm (±965) for MLOF. Only one patient in the TM group had EZW loss at presentation. There was considerable overlap in ERG findings, although the largest DA 10 ERG b-waves were associated with TLOF and the smallest with TM variants.Conclusions Patients with missense alterations had better BCVA and greater structural integrity. This is important for patient prognostication and counselling, as well as stratification for future gene therapy trials
    corecore