21 research outputs found

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Catching element formation in the act

    Get PDF
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Use of data from the Vascular Quality Initiative registry to support regulatory decisions yielded a high return on investment

    No full text
    BACKGROUND: Real-world data (RWD) from the Society for Vascular Surgery Vascular Quality Initiative (VQI) registry has been used to support US Food and Drug Administration (FDA) regulatory decisions regarding vascular devices. The variables of cost and time needed for these registry-based studies have not been previously compared to traditional, independent, industry studies that would otherwise have been conducted to support regulatory decisions. OBJECTIVES: To determine the potential value (cost and time saving and return on investment) created by device evaluation studies using the VQI registry infrastructure. METHODS: We compared studies that used data from the VQI registry with estimated costs of independent industry studies (counterfactual studies) using an established model using design specifications determined by FDA reviewers. RESULTS: We analyzed the initial six studies evaluating vascular devices for regulatory decisions using data from the VQI registry that generated evidence for four device manufacturers. Return on investment for these studies was estimated to be 143% and cost saving as 59% based on an actual per patient (with 5-year follow-up) cost of US11KusingVQIdataversusUS11K using VQI data versus US26K from the counterfactual when averaged across all studies. Significant enrollment time savings (45%-71%) were also realized compared with industry-based estimates. CONCLUSIONS: The use of RWD from the VQI registry in this study and the transcatheter valve treatment coordinated registry network in a prior study indicates that substantial value was added to device evaluation projects by the reuse of registry data, with additional potential savings if linked claims data can be used instead of costly long-term in-person follow-up

    Potential for immune-driven viral polymorphisms to compromise antiretroviral-based preexposure prophylaxis for prevention of HIV-1 infection

    No full text
    ObjectiveLong-acting rilpivirine is a candidate for preexposure prophylaxis (PrEP) for prevention of HIV-1 infection. However, rilpivirine resistance mutations at reverse transcriptase codon 138 (E138X) occur naturally in a minority of HIV-1-infected persons; in particular those expressing human leukocyte antigen (HLA)-B18 where reverse transcriptase-E138X arises as an immune escape mutation. We investigate the global prevalence, B18-linkage and replicative cost of reverse transcriptase-E138X and its regional implications for rilpivirine PrEP.MethodsWe analyzed linked reverse transcriptase-E138X/HLA data from 7772 antiretroviral-naive patients from 16 cohorts spanning five continents and five HIV-1 subtypes, alongside unlinked global reverse transcriptase-E138X and HLA frequencies from public databases. E138X-containing HIV-1 variants were assessed for in-vitro replication as a surrogate of mutation stability following transmission.ResultsReverse transcriptase-E138X variants, where the most common were rilpivirine resistance-associated mutations E138A/G/K, were significantly enriched in HLA-B18-positive individuals globally (P = 3.5 × 10) and in all HIV-1 subtypes except A. Reverse transcriptase-E138X and B18 frequencies correlated positively in 16 cohorts with linked HIV/HLA genotypes (Spearman's R = 0.75; P = 7.6 × 10) and in unlinked HIV/HLA data from 43 countries (Spearman's R = 0.34, P = 0.02). Notably, reverse transcriptase-E138X frequencies approached (or exceeded) 10% in key epidemic regions (e.g. sub-Saharan Africa, Southeastern Europe) where B18 is more common. This, along with the observation that reverse transcriptase-E138X variants do not confer in-vitro replicative costs, supports their persistence, and ongoing accumulation in circulation over time.ConclusionsResults illustrate the potential for a natural immune-driven HIV-1 polymorphism to compromise antiretroviral-based prevention, particularly in key epidemic regions. Regional reverse transcriptase-E138X surveillance should be undertaken before use of rilpivirine PrEP

    Journal of Law and Administrative Sciences No. 3/2015

    No full text
    corecore