3,397 research outputs found

    A Faculty Development Workshop for High-Value Care Education Across Clinical Settings.

    Get PDF
    IntroductionDespite rising health care costs, trainees frequently do not receive formal high-value care (HVC) training. As medical education often occurs through informal learning, it is imperative that medical educators be prepared to teach HVC concepts across clinical settings.MethodsThis workshop was created to provide frameworks for teaching HVC across four pediatric educational settings: (1) case-based conferences, (2) inpatient rounding, (3) ambulatory visits, and (4) conversations with patients and families. Frameworks were developed based on literature review, content experts' knowledge, and internal assessment and feedback. The workshop was divided into two sections: a didactic overview of HVC education and interactive small-group sessions to practice application of the Toolkit for Teaching High-Value Care. At the end of the workshop, participants completed the Prescription for High-Value Care to create a personal action plan.ResultsThis workshop has been presented at both national and local pediatric conferences. From over 89 evaluations (83% response rate), participants felt the workshop met objectives, served as a valuable use of their time, and provided useful resources. Evaluations elicited specific actions that participants gleaned from workshop content along with proposed behavior changes, such as creating HVC case-based conferences at their home institution and initiating more value-based discussions.DiscussionThis workshop has been successfully presented in both national and local settings and has been well received by participants. The workshop is targeted for clinical educators and aims to address the gap in faculty development for HVC education

    Signatures of Relativistic Helical Motion in the Rotation Measures of AGN Jets

    Full text link
    Polarization has proved an invaluable tool for probing magnetic fields in relativistic jets. Maps of the intrinsic polarization vectors have provided the best evidence to date for uniform, toroidally dominated magnetic fields within jets. More recently, maps of the rotation measure (RM) in jets have for the first time probed the field geometry of the cool, moderately relativistic surrounding material. In most cases, clear signatures of toroidal magnetic field are detected, corresponding to gradients in RM profiles transverse to the jet. However, in many objects these profiles also display marked asymmetries which are difficult to explain in simple helical jet models. Furthermore, in some cases the RM profiles are strongly frequency and/or time dependent. Here we show that these features may be naturally accounted for by including relativistic helical motion in the jet model. In particular, we are able to reproduce bent RM profiles observed in a variety of jets, frequency dependent RM profile morphologies and even the time dependence of the RM profiles of knots in 3C 273. Finally, we predict that some sources may show reversals in their RM profiles at sufficiently high frequencies, depending upon the the ratio of the components of jet sheath velocity transverse and parallel to the jet. Thus, multi-frequency RM maps promise a novel way in which to probe the velocity structure of relativistic outflows.Comment: 5 pages, 4 figures, submitted to ApJ

    Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat.

    Get PDF
    Epilepsy affects approximately 50 million people worldwide, and 20-30% of these cases are refractory to antiepileptic drugs. Many patients with intractable epilepsy can benefit from surgical resection of the tissue generating the seizures; however, difficulty in precisely localising seizure foci has limited the number of patients undergoing surgery as well as potentially lowered its effectiveness. Here we demonstrate a novel imaging method for monitoring rapid changes in cerebral tissue impedance occurring during interictal and ictal activity, and show that it can reveal the propagation of pathological activity in the cortex. Cortical impedance was recorded simultaneously to ECoG using a 30-contact electrode mat placed on the exposed cortex of anaesthetised rats, in which interictal spikes (IISs) and seizures were induced by cortical injection of 4-aminopyridine (4-AP), picrotoxin or penicillin. We characterised the tissue impedance responses during IISs and seizures, and imaged these responses in the cortex using Electrical Impedance Tomography (EIT). We found a fast, transient drop in impedance occurring as early as 12ms prior to the IISs, followed by a steep rise in impedance within ~120ms of the IIS. EIT images of these impedance changes showed that they were co-localised and centred at a depth of 1mm in the cortex, and that they closely followed the activity propagation observed in the surface ECoG signals. The fast, pre-IIS impedance drop most likely reflects synchronised depolarisation in a localised network of neurons, and the post-IIS impedance increase reflects the subsequent shrinkage of extracellular space caused by the intense activity. EIT could also be used to picture a steady rise in tissue impedance during seizure activity, which has been previously described. Thus, our results demonstrate that EIT can detect and localise different physiological changes during interictal and ictal activity and, in conjunction with ECoG, may in future improve the localisation of seizure foci in the clinical setting

    Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    Get PDF
    Embryonic neuroepithelia and adult subventricular zone (SVZ) stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP) specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes

    Effects of Craniofacial Structures on Mouse Palatal Closure In Vitro

    Full text link
    Heads of Swiss-Webster mouse fetuses of four ages spanning days 12-13 of gestation, were partially dissected by removing the brain (B), tongue (T) and mandible (M) alone or in combination (BT, BM, BTM). Preparations were suspended in a gassed, circulating culture system such that palatal closure must take place against gravity. Closure occurred earlier than in vivo and required the posterior half of the mandible be intact and the tongue removed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68249/2/10.1177_00220345780570024401.pd

    Tension fracture of laminates for transport fuselage. Part 1: Material screening

    Get PDF
    Transport fuselage structures are designed to contain pressure following a large penetrating damage event. Applications of composites to fuselage structures require a database and supporting analysis on tension damage tolerance. Tests with 430 fracture specimens were used to accomplish the following: (1) identify critical material and laminate variables affecting notch sensitivity; (2) evaluate composite failure criteria; and (3) recommend a screening test method. Variables studied included fiber type, matrix toughness, lamination manufacturing process, and intraply hybridization. The laminates found to have the lowest notch sensitivity were manufactured using automated tow placement. This suggests a possible relationship between the stress distribution and repeatable levels of material inhomogeneity that are larger than found in traditional tape laminates. Laminates with the highest notch sensitivity consisted of toughened matrix materials that were resistant to a splitting phenomena that reduces stress concentrations in major load bearing plies. Parameters for conventional fracture criteria were found to increase with crack length for the smallest notch sizes studied. Most material and laminate combinations followed less than a square root singularity for the largest crack sizes studied. Specimen geometry, notch type, and notch size were evaluated in developing a screening test procedure. Traitional methods of correcting for specimen finite width were found to be lacking. Results indicate that a range of notch sizes must be tested to determine notch sensitivity. Data for a single small notch size (0.25 in. diameter) was found to give no indication of the sensitivity of a particular material and laminate layup to larger notch sizes

    Imaging the Black Hole Silhouette of M87: Implications for Jet Formation and Black Hole Spin

    Full text link
    The silhouette cast by the horizon of the supermassive black hole in M87 can now be resolved with the emerging millimeter very-long baseline interferometry (VLBI) capability. Despite being ~2000 times farther away than SgrA* (the supermassive black hole at the center of the Milky-Way and the primary target for horizon-scale imaging), M87's much larger black hole mass results in a horizon angular scale roughly half that of SgrA*'s, providing another practical target for direct imaging. However, unlike SgrA*, M87 exhibits a powerful radio jet, providing an opportunity to study jet formation physics on horizon scales. We employ a simple, qualitatively correct force-free jet model to explore the expected high-resolution images of M87 at wavelengths of 1.3mm and 0.87mm (230GHz and 345GHz), for a variety of jet parameters. We show that future VLBI data will be able to constrain the size of the jet footprint, the jet collimation rate, and the black hole spin. Polarization will further probe the structure of the jet's magnetic field and its effect on the emitting gas. Horizon-scale imaging of M87 and SgrA* will enable for the first time the empirical exploration of the relationship between the mass and spin of a black hole and the characteristics of the gas inflow/outflow around it.Comment: 18 pages, 7 figures, accepted by Ap

    Review of anthraquinone applications for pest management and agricultural crop protection

    Get PDF
    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghumbicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus,Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), housemice (Musmusculus, L.), Tristram’s jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ is a promising candidate for many contexts of non-lethal and insecticidal pest management

    Imaging fast electrical activity in the brain during ictal epileptiform discharges with electrical impedance tomography

    Get PDF
    Electrical Impedance Tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of internal impedance changes within an object using non-penetrating surface electrodes. It has previously been used to image impedance changes due to neuronal depolarisation during evoked potentials in the rat somatosensory cortex with a resolution of 2 ms and <200 μm, using an epicortical electrode array. The purpose of this work was to use this technique to elucidate the intracortical spatiotemporal trajectory of ictal spike-and-wave discharges (SWDs), induced by electrical stimulation in an acute rat model of epilepsy, throughout the cerebral cortex. Seizures lasting 16.5 ± 5.3 s with repetitive 2-5 Hz SWDs were induced in five rats anaesthetised with fentanyl-isoflurane. Transfer impedance measurements were obtained during each seizure with a 57-electrode epicortical array by applying 50 μA current at 1.7 kHz to two electrodes and recording voltages from all remaining electrodes. Images were reconstructed from averaged SWD-related impedance traces obtained from EIT measurements in successive seizures. We report the occurrence of reproducible impedance changes during the initial spike phase, which had an early onset in the whisker barrel cortex and spread posteriorly, laterally and ventrally over 20 ms (p < 0.03125, N = 5). These findings, which confirm and extend knowledge of SWD initiation and expression, suggest that EIT is a valuable neuroimaging tool for improving understanding of neural circuits implicated in epileptic phenomena

    Imaging slow brain activity during neocortical and hippocampal epileptiform events with electrical impedance tomography

    Get PDF
    Objective. Electrical impedance tomography (EIT) is an imaging technique that produces tomographic images of internal impedance changes within an object using surface electrodes. It can be used to image the slow increase in cerebral tissue impedance that occurs over seconds during epileptic seizures, which is attributed to cell swelling due to disturbances in ion homeostasis following hypersynchronous neuronal firing and its associated metabolic demands. In this study, we characterised and imaged this slow impedance response during neocortical and hippocampal epileptiform events in the rat brain and evaluated its relationship to the underlying neural activity. Approach. Neocortical or hippocampal seizures, comprising repeatable series of high-amplitude ictal spikes, were induced by electrically stimulating the sensorimotor cortex or perforant path of rats anaesthetised with fentanyl-isoflurane. Transfer impedances were measured during ≥30 consecutive seizures, by applying a sinusoidal current through independent electrode pairs on an epicortical array, and combined to generate an EIT image of slow activity. Main results. The slow impedance responses were consistently time-matched to the end of seizures and EIT images of this activity were reconstructed reproducibly in all animals (p < 0.03125, N = 5). These displayed foci of activity that were spatially confined to the facial somatosensory cortex and dentate gyrus for neocortical and hippocampal seizures, respectively, and encompassed a larger volume as the seizure progressed. Centre-of-mass analysis of reconstructions revealed that this activity corresponded to the true location of the epileptogenic zone, as determined by EEG recordings and fast neural EIT measurements which were obtained simultaneously. Significance. These findings suggest that the slow impedance response presents a reliable marker of hypersynchronous neuronal activity during epileptic seizures and can thus be utilised for investigating the mechanisms of epileptogenesis in vivo and for aiding localisation of the epileptogenic zone during presurgical evaluation of patients with refractory epilepsies
    corecore