312 research outputs found

    Structures of tetrasilylmethane derivatives C(SiXMe2)4 (X = H, F, Cl, Br) in the gas phase and their dynamic structures in solution.

    Get PDF
    The structures of the molecules C(SiXMe2)4 (X = H, F, Cl, Br) have been determined by gas electron diffraction (GED). Ab initio calculations revealed nine potential minima for each species, with significant ranges of energies. For the H, F, Cl, and Br derivatives nine, seven, two, and two conformers were modelled, respectively, as they were quantum-chemically predicted to be present in measurable quantities. Variable-temperature 1H and 29Si solution-phase NMR studies and, where applicable, 13C NMR, 1H/29Si NMR shift-correlation, and 1H NMR saturation-transfer experiments are reported for C(SiXMe2)4 (X = H, Cl, Br, and also I). At low temperature in solution two conformers (one C1-symmetric and one C2-symmetric) are observed for each of C(SiXMe2)4 (X = Cl, Br, I), in agreement with the isolated molecule ab initiocalculations carried out as part of this work for X = Cl, Br. C(SiHMe2)4 is present as a single C1-symmetric conformer in solution at the temperatures at which the NMR experiments were performed

    A Uniform Algorithm for All-Speed Shock-Capturing Schemes

    Full text link
    There are many ideas for developing shock-capturing schemes and their extension for all-speed flow. The representatives of them are Roe, HLL and AUSM families. In this paper, a uniform algorithm is proposed, which expresses three families in the same framework. The algorithm has explicit physical meaning, provides a new angel of understanding and comparing the mechanism of schemes, and may play a great role in the further research. As an example of applying the uniform algorithm, the low-Mach number behaviour of the schemes is analyzed. Then, a very clear and simple explanation is given based on the wall boundary, and a concise rule is proposed to judge whether a scheme has satisfied low-Mach number behaviour

    Structures of tetrasilylmethane derivatives (XMe2Si)2C(SiMe3)2 (X = H, Cl, Br) in the gas phase, and their dynamic structures in solution

    Get PDF
    The structures of the molecules (XMe2Si)2C(SiMe3)2, where X = H, Cl, Br, have been determined by gas electron diffraction (GED) using the SARACEN method of restraints, with all analogues existing in the gas phase as mixtures of C1- and C2-symmetric conformers. Variable temperature 1H and 29Si solution-phase NMR studies, as well as 13C NMR and 1H/29Si NMR shift correlation and 1H NMR saturation transfer experiments for the chlorine and bromine analogues, are reported. At low temperatures in solution there appear to be two C1 conformers and two C2 conformers, agreeing with the isolated-molecule calculations used to guide the electron diffraction refinements. For (HMe2Si)2C(SiMe3)2 the calculations indicated six conformers close in energy, and these were modeled in the GED refinement

    Hydrogen Bonding in Ionic Liquids Probed by Linear and Nonlinear Vibrational Spectroscopy

    Get PDF
    Three imidazolium-based ionic liquids of the type [Cnmim][NTf2] with varying alkyl chain lengths (n = 1, 2 and 8) at the 1 position of the imidazolium ring were studied applying IR, linear Raman, and multiplex CARS spectroscopy. The focus has been on the CH-stretching region of the imidazolium ring, which is supposed to carry information about a possible hydrogen bonding network in the ionic liquid. The measurements are compared to calculations of the corresponding anharmonic vibrational spectra for a cluster of [C2mim][NTf2] consisting of four ion pairs. The results support the hypothesis of weak hydrogen bonding involving the C(4)-H and C(5)-H groups and somewhat stronger hydrogen bonds of the C(2)-H groups.Comment: revised manuscript, accepted for publication in New J. Phy

    The double [3+2] photocycloaddition reaction

    Get PDF
    One of a synthetic organic chemists‟ greatest challenges is to create step-efficient routes toward compounds with high molecular complexity. Therefore, reactions such as the meta photocycloaddition of an olefin to a benzene derivative, which provide more than one bond in a single step are of significant importance. It this remarkable reaction three new σ bonds, three new rings and up to six new stereocenters are formed simultaneously. Additional complexity can be added by tethering the two reacting partners together and this form of the reaction has found many uses in natural product synthesis. In this work a remarkable double [3+2] photocycloaddition reaction is reported that results in the formation of a complex cis, cis, cis, trans-[5, 5, 5, 5] fenestrane derivative from a simple flat aromatic acetal with two branching alkenes. During this dramatic transformation four carboncarbon bonds, five new rings and seven new stereocenters are created in a single one-pot process using only UV light. The reaction occurs in a sequential manner from the linear meta photocycloadduct, via a secondary [3+2] addition of the alkene across the cyclopropane of the adduct. In addition, an angular meta photocycloadduct also produced in the initial addition step, undergoes an alternative fragmentation-translocation photoreaction to afford a silphinene-like angular tricyclic compound. In this work the investigation of this newly discovered process is discussed via the synthesis and subsequent irradiation of a series of photosubstrates containing different functional groups in the arene-alkene tether. In addition, attempts toward the synthesis of alternative structures using the same double [3+2] photocycloaddition are reported

    No selection for change in polyandry under experimental evolution

    Get PDF
    What drives mating system variation is a major question in evolutionary biology. Female multiple mating (polyandry) has diverse evolutionary consequences, and there are many potential benefits and costs of polyandry. However, our understanding of its evolution is biased towards studies enforcing monandry in polyandrous species. What drives and maintains variation in polyandry between individuals, genotypes, populations and species remains poorly understood. Genetic variation in polyandry may be actively maintained by selection, or arise by chance if polyandry is selectively neutral. In Drosophila pseudoobscura, there is genetic variation in polyandry between and within populations. We used isofemale lines to found replicate populations with high or low initial levels of polyandry and tracked polyandry under experimental evolution over seven generations. Polyandry remained relatively stable, reflecting the starting frequencies of the experimental populations. There were no clear fitness differences between high versus low polyandry genotypes, and there was no signature of balancing selection. We confirmed these patterns in direct comparisons between evolved and ancestral females and found no consequences of polyandry for female fecundity. The absence of differential selection even when initiating populations with major differences in polyandry casts some doubt on the importance of polyandry for female fitness

    Hormonal signaling in cnidarians : do we understand the pathways well enough to know whether they are being disrupted?

    Get PDF
    Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 5-13, doi:10.1007/s10646-006-0121-1.Cnidarians occupy a key evolutionary position as basal metazoans and are ecologically important as predators, prey and structure-builders. Bioregulatory molecules (e.g., amines, peptides and steroids) have been identified in cnidarians, but cnidarian signaling pathways remain poorly characterized. Cnidarians, especially hydras, are regularly used in toxicity testing, but few studies have used cnidarians in explicit testing for signal disruption. Sublethal endpoints developed in cnidarians include budding, regeneration, gametogenesis, mucus production and larval metamorphosis. Cnidarian genomic databases, microarrays and other molecular tools are increasingly facilitating mechanistic investigation of signaling pathways and signal disruption. Elucidation of cnidarian signaling processes in a comparative context can provide insight into the evolution and diversification of metazoan bioregulation. Characterizing signaling and signal disruption in cnidarians may also provide unique opportunities for evaluating risk to valuable marine resources, such as coral reefs
    • 

    corecore