273 research outputs found

    Structures of tetrasilylmethane derivatives C(SiXMe2)4 (X = H, F, Cl, Br) in the gas phase and their dynamic structures in solution.

    Get PDF
    The structures of the molecules C(SiXMe2)4 (X = H, F, Cl, Br) have been determined by gas electron diffraction (GED). Ab initio calculations revealed nine potential minima for each species, with significant ranges of energies. For the H, F, Cl, and Br derivatives nine, seven, two, and two conformers were modelled, respectively, as they were quantum-chemically predicted to be present in measurable quantities. Variable-temperature 1H and 29Si solution-phase NMR studies and, where applicable, 13C NMR, 1H/29Si NMR shift-correlation, and 1H NMR saturation-transfer experiments are reported for C(SiXMe2)4 (X = H, Cl, Br, and also I). At low temperature in solution two conformers (one C1-symmetric and one C2-symmetric) are observed for each of C(SiXMe2)4 (X = Cl, Br, I), in agreement with the isolated molecule ab initiocalculations carried out as part of this work for X = Cl, Br. C(SiHMe2)4 is present as a single C1-symmetric conformer in solution at the temperatures at which the NMR experiments were performed

    A Uniform Algorithm for All-Speed Shock-Capturing Schemes

    Full text link
    There are many ideas for developing shock-capturing schemes and their extension for all-speed flow. The representatives of them are Roe, HLL and AUSM families. In this paper, a uniform algorithm is proposed, which expresses three families in the same framework. The algorithm has explicit physical meaning, provides a new angel of understanding and comparing the mechanism of schemes, and may play a great role in the further research. As an example of applying the uniform algorithm, the low-Mach number behaviour of the schemes is analyzed. Then, a very clear and simple explanation is given based on the wall boundary, and a concise rule is proposed to judge whether a scheme has satisfied low-Mach number behaviour

    Hydrogen Bonding in Ionic Liquids Probed by Linear and Nonlinear Vibrational Spectroscopy

    Get PDF
    Three imidazolium-based ionic liquids of the type [Cnmim][NTf2] with varying alkyl chain lengths (n = 1, 2 and 8) at the 1 position of the imidazolium ring were studied applying IR, linear Raman, and multiplex CARS spectroscopy. The focus has been on the CH-stretching region of the imidazolium ring, which is supposed to carry information about a possible hydrogen bonding network in the ionic liquid. The measurements are compared to calculations of the corresponding anharmonic vibrational spectra for a cluster of [C2mim][NTf2] consisting of four ion pairs. The results support the hypothesis of weak hydrogen bonding involving the C(4)-H and C(5)-H groups and somewhat stronger hydrogen bonds of the C(2)-H groups.Comment: revised manuscript, accepted for publication in New J. Phy

    No selection for change in polyandry under experimental evolution

    Get PDF
    What drives mating system variation is a major question in evolutionary biology. Female multiple mating (polyandry) has diverse evolutionary consequences, and there are many potential benefits and costs of polyandry. However, our understanding of its evolution is biased towards studies enforcing monandry in polyandrous species. What drives and maintains variation in polyandry between individuals, genotypes, populations and species remains poorly understood. Genetic variation in polyandry may be actively maintained by selection, or arise by chance if polyandry is selectively neutral. In Drosophila pseudoobscura, there is genetic variation in polyandry between and within populations. We used isofemale lines to found replicate populations with high or low initial levels of polyandry and tracked polyandry under experimental evolution over seven generations. Polyandry remained relatively stable, reflecting the starting frequencies of the experimental populations. There were no clear fitness differences between high versus low polyandry genotypes, and there was no signature of balancing selection. We confirmed these patterns in direct comparisons between evolved and ancestral females and found no consequences of polyandry for female fecundity. The absence of differential selection even when initiating populations with major differences in polyandry casts some doubt on the importance of polyandry for female fitness

    Hormonal signaling in cnidarians : do we understand the pathways well enough to know whether they are being disrupted?

    Get PDF
    Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 5-13, doi:10.1007/s10646-006-0121-1.Cnidarians occupy a key evolutionary position as basal metazoans and are ecologically important as predators, prey and structure-builders. Bioregulatory molecules (e.g., amines, peptides and steroids) have been identified in cnidarians, but cnidarian signaling pathways remain poorly characterized. Cnidarians, especially hydras, are regularly used in toxicity testing, but few studies have used cnidarians in explicit testing for signal disruption. Sublethal endpoints developed in cnidarians include budding, regeneration, gametogenesis, mucus production and larval metamorphosis. Cnidarian genomic databases, microarrays and other molecular tools are increasingly facilitating mechanistic investigation of signaling pathways and signal disruption. Elucidation of cnidarian signaling processes in a comparative context can provide insight into the evolution and diversification of metazoan bioregulation. Characterizing signaling and signal disruption in cnidarians may also provide unique opportunities for evaluating risk to valuable marine resources, such as coral reefs

    Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids:Invited Review

    Get PDF

    Parental breeding age effects on descendants' longevity interact over 2 generations in matrilines and patrilines

    Get PDF
    Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal age can affect offspring longevity as strongly as maternal age does and that breeding age effects can interact over 2 generations in both matrilines and patrilines. We manipulated maternal and paternal ages at breeding over 2 generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of parental and grand-parental ages at breeding on descendants' mortality rate and life span in both matrilines and patrilines. These breeding age effects were not modulated by grand-parental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute substantially to intrapopulation variation in mortality and longevity
    • 

    corecore