184 research outputs found

    Photon-energy dissipation caused by an external electric circuit in "virtual" photo-excitation processes

    Get PDF
    We consider generation of an electrical pulse by an optical pulse in the ``virtual excitation'' regime. The electronic system, which is any electro-optic material including a quantum well structure biased by a dc electric field, is assumed to be coupled to an external circuit. It is found that the photon frequency is subject to an extra red shift in addition to the usual self-phase modulation, whereas the photon number is conserved. The Joule energy consumed in the external circuit is supplied only from the extra red shift.Comment: 4 pages, 1 fugur

    Nonlinear Optical Response of Spin Density Wave Insulators

    Full text link
    We calculate the third order nonlinear optical response in the Hubbard model within the spin density wave (SDW) mean field ansatz in which the gap is due to onsite Coulomb repulsion. We obtain closed-form analytical results in one dimension (1D) and two dimension (2D), which show that nonlinear optical response in SDW insulators in 2D is stronger than both 3D and 1D. We also calculate the two photon absorption (TPA) arising from the stress tensor term. We show that in the SDW, the contribution from stress tensor term to the low-energy peak corresponding to two photon absorption becomes identically zero if we consider the gauge invariant current properly.Comment: we use \psfrag in figur

    Slow group velocity and Cherenkov radiation

    Get PDF
    We theoretically study the effect of ultraslow group velocities on the emission of Vavilov-Cherenkov radiation in a coherently driven medium. We show that in this case the aperture of the group cone on which the intensity of the radiation peaks is much smaller than that of the usual wave cone associated with the Cherenkov coherence condition. We show that such a singular behaviour may be observed in a coherently driven ultracold atomic gas.Comment: 4 pages, 4 figure

    Characterizing temporary hydrological regimes at a European scale

    Get PDF
    Monthly duration curves have been constructed from climate data across Europe to help address the relative frequency of ecologically critical low flow stages in temporary rivers, when flow persists only in disconnected pools in the river bed. The hydrological model is 5 based on a partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. The corresponding frequency for pools is then based on the ratio of bank full discharge to pool flow, arguing from observed ratios of cross-sectional areas at flood 10 and low flows to estimate pool flow as 0.1% of bankfull flow, and so estimate the frequency of the pool conditions that constrain survival of river-dwelling arthropods and fish. The methodology has been applied across Europe at 15 km resolution, and can equally be applied under future climatic scenarios
    • 

    corecore