31 research outputs found

    Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locations

    Get PDF
    Summary Background Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. Methods For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000–16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. Findings 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m3 increase in the 3-day moving average (lag 0–2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016–1·022) for all-cause mortality, 1·017 (1·012–1·021) for cardiovascular mortality, and 1·019 (1·013–1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48–0·75) of all-cause deaths, 0·55% (0·43–0·67) of cardiovascular deaths, and 0·64% (0·50–0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period.Australian Research Council, Australian National Health & Medical Research Council.Peer reviewe

    Comparison of weather station and climate reanalysis data for modelling temperature-related mortality

    Get PDF
    Multi-Country Multi-City (MCC) Collaborative Research Network: Barrak Alahmad, Rosana Abrutzky, Paulo Hilario Nascimento Saldiva, Patricia Matus Correa, Nicolás Valdés Orteg, Haidong Kan, Samuel Osorio, Ene Indermitte, Jouni J K Jaakkola, Niilo Ryti, Alexandra Schneider, Veronika Huber, Klea Katsouyanni, Antonis Analitis, Alireza Entezari, Fatemeh Mayvaneh, Paola Michelozzi, Francesca de'Donato, Masahiro Hashizume, Yoonhee Kim, Magali Hurtado Diaz, César De la Cruz Valencia, Ala Overcenco, Danny Houthuijs, Caroline Ameling, Shilpa Rao, Xerxes Seposo, Baltazar Nunes, Iulian-Horia Holobaca, Ho Kim, Whanhee Lee, Carmen Íñiguez, Bertil Forsberg, Christofer Åström, Martina S Ragettli, Yue-Liang Leon Guo, Bing-Yu Chen, Valentina Colistro, Antonella Zanobetti, Joel Schwartz, Tran Ngoc Dang, Do Van DungErratum in: Author Correction: Sci Rep. 2022 May 13;12(1):7960. doi: 10.1038/s41598-022-11769-6. https://www.nature.com/articles/s41598-022-11769-6Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.The study was primarily supported by Grants from the European Commission’s Joint Research Centre Seville (Research Contract ID: JRC/SVQ/2020/MVP/1654), Medical Research Council-UK (Grant ID: MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). The following individual Grants also supported this work: J.K and A.U were supported by the Czech Science Foundation, project 20-28560S. A.T was supported by MCIN/AEI/10.13039/501100011033, Grant CEX2018-000794-S. V.H was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 101032087.info:eu-repo/semantics/publishedVersio

    a three-stage modelling study

    Get PDF
    Funding Information: This study was supported by the Australian Research Council (DP210102076) and the Australian National Health and Medical Research Council (APP2000581). YW was supported by the China Scholarship Council (number 202006010044). SL was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (number APP2009866). QZ was supported by the Program of Qilu Young Scholars of Shandong University, Jinan, China. BW was supported by the China Scholarship Council (number 202006010043). JK and AU were supported by the Czech Science Foundation (project number 20–28560S). NS was supported by the National Institute of Environmental Health Sciences-funded HERCULES Center (P30ES019776). S-CP and YLG were supported by the Ministry of Science and Technology (Taiwan; MOST 109–2621-M-002–021). YH was supported by the Environment Research and Technology Development Fund (JPMEERF15S11412) of the Environmental Restoration and Conservation Agency. MdSZSC and PHNS were supported by the São Paulo Research Foundation (FAPESP). ST was supported by the Science and Technology Commission of Shanghai Municipality (grant number 18411951600). HO and EI were supported by the Estonian Ministry of Education and Research (IUT34–17). JM was supported by a fellowship of Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016). AG and FS were supported by the Medical Research Council UK (grant ID MR/R013349/1), the Natural Environment Research Council UK (grant ID NE/R009384/1), and the EU's Horizon 2020 project, Exhaustion (grant ID 820655). AS, SR, and FdD were supported by the EU's Horizon 2020 project, Exhaustion (grant ID 820655). VH was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046). AT was supported by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). YG was supported by the Career Development Fellowship (number APP1163693) and Leader Fellowship (number APP2008813) of the Australian National Health and Medical Research Council. Statistics South Africa kindly provided the mortality data, but had no other role in the study. This Article is published in memory of Simona Fratianni, who helped to contribute the data for Romania. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000–19. Methods: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° from 2000–19. Temperature variability was calculated as the SD of the average of the same and previous days’ minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. Findings: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901–2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2–4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7–5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3–10·4), followed by Europe (4·4%, 2·2–5·6) and Africa (3·3, 1·9–4·6). Interpretation: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. Funding: Australian Research Council, Australian National Health & Medical Research Council.publishersversionpublishe

    Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study.

    Get PDF
    BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. FINDINGS: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council

    Geographical Variations of the Minimum Mortality Temperature at a Global Scale

    Get PDF
    Background: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale.Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators.Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community’s annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community’s annual mean temperature and by 1.3 for a 1 °C rise in its SD.Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation

    Global, regional, and national burden of mortality associated with short-term temperature variability from 2000-19: a three-stage modelling study.

    Get PDF
    BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council

    Mortality risk attributable to wildfire-related PM2·5 pollution : a global time series study in 749 locations

    Get PDF
    BACKGROUND : Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. METHODS : For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000–16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. FINDINGS : 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m³ increase in the 3-day moving average (lag 0–2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016–1·022) for all-cause mortality, 1·017 (1·012–1·021) for cardiovascular mortality, and 1·019 (1·013–1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48–0·75) of all-cause deaths, 0·55% (0·43–0·67) of cardiovascular deaths, and 0·64% (0·50–0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period. INTERPRETATION : Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires.The Australian Research Council, the Australian National Health and Medical Research Council, a Career Development Fellowship of the Australian National Health and Medical Research Council, an Early Career Fellowship of the Australian National Health and Medical Research Council, the National Natural Science Foundation of China, the Czech Science Foundation, the Spanish Ministry of Economy, Industry and Competitiveness, the National Key Research and Development Program of China, EU’s Horizon 2020 Project Exhaustion, the Ministry of Science and Technology of Taiwan, the Medical Research Council UK, the Natural Environment Research Council UK, a fellowship of the Fundação para a Ciência e a Tecnologia, the Science and Technology Commission of Shanghai Municipality and the National Institute of Environmental Health Sciences-funded HERCULES Center.http://www.thelancet.com/planetary-healtham2022Geography, Geoinformatics and Meteorolog

    Factores asociados al uso de DIU en mujeres de 35 a 49 años en un policlínico de Ciudad de La Habana Factors associated with the use of IUD in women aged 35-49 in a polyclinic of Havana City

    No full text
    El presente trabajo tuvo como objetivo determinar la frecuencia del uso de dispositivo intrauterino (DIU) y los factores sociodemográficos, reproductivos y de información asociados a este en mujeres de 35 a 49 años de edad. En 1999 se aplicó una encuesta sobre el uso de anticonceptivos a 375 mujeres pertenecientes al policlínico "Moncada", en Ciudad de La Habana. El análisis incluyó regresión logística no condicionada para determinar la asociación entre las variables sociodemográficas, biológicas, reproductivas y educativas o de información y el uso de DIU. La medida de asociación utilizada fue la razón de momios (RM) a un intervalo de confianza del 95 %. Como resultado se obtuvo que el DIU fue utilizado por el 43,4 % de las mujeres que usan anticonceptivos; de ellas, el 61,5 % tenía 1 hijo o ninguno. La probabilidad de uso de DIU fue mayor entre las mujeres de 35 a 39 años (RM = 286, IC: 95 % = 1,43 - 5,75) y de 40 a 44 (RM = 2,42, IC: 95 % = 1,13 - 5,45) que en las de 45 a 49. El uso de DIU también fue mayor en mujeres que tenían menos de 2 hijos (RM = 3,22, IC: 95 % = 1,94 - 5,36), y resultó ser aún mayor si estas estaban informadas (RM = 5,22, IC: 95 % = 2,27 - 12,03) o habían recibido orientación médica (RM = 2,35, IC: 95 % = 1,16 - 4,78). Otras variables estuvieron asociadas al uso de DIU, pero solo la paridad y la orientación del método por el médico mantuvieron su significancia en el análisis multivariado. Se concluye que la orientación del médico es una variable que influye positivamente en la decisión de uso de DIU en la población de mujeres estudiadas entre 35 y 49 años de edad, sobre todo si se considera que la paridad está "satisfecha" o "terminada".<br>The purpose of the present paper was to determine the frequency of the use of the intrauterine device and the sociodemographic, reproductive and information factors associated with it in women aged 35-49. In 1999, a survey on the use of contraceptives was done among 375 women from "Moncada" Polyclinic, in Havana City. The analysis included non-conditioned logistical regression to determine the association among the sociodemographic, biological, reproductive and educative, or information variables and the use of IUDs. The measure of association used was the ratio of momios at a confidence interval of 95 %. As a result, it was observed that the IUD was used by 43.3 % of women using contraceptives; of them, 61.5 % had one or no child. The probability of use of the IUD was higher in women aged 35-39 (RM=286, CI: 95 % = 1.43 - 5.75) and 40-44 (RM = 2.42, CI: 95 % = 1.13 - 5.45) than in females aged 45-49. The use of the IUD was also greater in women having less than 2 children (RM = 3.33, CI: 95 % = 1.94 - 5.36), and it was even higher if they were informed (RM = 2.42, CI: 95 % = 2.27 - 12.03) or if they have received medical counselling (RM = 2.35, CI: 95 % = 1.16 -4.78). Other variables were associated with the use of IUDs, but only parity and the indication of the method by the physician maintained their significance in the multivariate analysis. It was concluded that the medical guidance is a variable that influences positively on the studied women aged 35-49 at the time of deciding whether to use the IUD, much more if parity is considered "satisfied" or "concluded"

    Geographical Variations of the Minimum Mortality Temperature at a Global Scale

    Get PDF
    Background: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.What this study adds: The minimum mortality temperature (MMT) is an important indicator of the relationship between temperature and mortality. It indicates the adaptability to climate, but little is known about its geographical changes in the global distribution. This article investigates the geographic differences of the MMT on a global scale and studies the influence of geographical, climatic, and socioeconomic factors. The results indicate that although there is still more room for adaptation, populations have adapted to the average temperature.info:eu-repo/semantics/publishedVersio
    corecore