181 research outputs found

    An expression atlas of chemosensory ionotropic glutamate receptors identifies a molecular basis of carbonation detection

    Get PDF
    Taste perception is thought to involve the encoding of appetitive and aversive chemical cues in food through a limited number of sensory pathways. Through expression analysis of the complete repertoire of Drosophila Ionotropic Receptors (IRs), a sensory subfamily of ionotropic glutamate receptors, we reveal that the majority of IRs is expressed in diverse peripheral neuron populations across gustatory organs in both larvae and adults, implying numerous roles in taste-evoked behaviours. We characterise Ir56d, which labels two anatomically-distinct classes of neurons in the proboscis: one represents a subset of sugar- and fatty acid-sensing neurons, while the other responds to carbonated solutions and fatty acids. Mutational analysis shows that IR56d, together with the broadly-expressed co-receptors IR25a and IR76b, is essential for physiological activation by carbonation and fatty acids, but not sucrose. We further demonstrate that carbonation is behaviourally attractive to flies (in an IR56d-dependent manner), but in a distinct way to other appetitive stimuli. Our work provides a valuable toolkit for investigating the taste functions of IRs, defines a molecular basis of carbonation sensing, and illustrates how the gustatory system uses combinatorial expression of sensory receptors in distinct neuron types to coordinate behaviour

    Genomic and Phenotypic Characterization of a Wild Medaka Population : Towards the Establishment of an Isogenic Population Genetic Resource in Fish

    Get PDF
    Oryzias latipes (medaka) has been established as a vertebrate genetic model for more than a century and recently has been rediscovered outside its native Japan. The power of new sequencing methods now makes it possible to reinvigorate medaka genetics, in particular by establishing a near-isogenic panel derived from a single wild population. Here we characterize the genomes of wild medaka catches obtained from a single Southern Japanese population in Kiyosu as a precursor for the establishment of a near-isogenic panel of wild lines. The population is free of significant detrimental population structure and has advantageous linkage disequilibrium properties suitable for the establishment of the proposed panel. Analysis of morphometric traits in five representative inbred strains suggests phenotypic mapping will be feasible in the panel. In addition, high-throughput genome sequencing of these medaka strains confirms their evolutionary relationships on lines of geographic separation and provides further evidence that there has been little significant interbreeding between the Southern and Northern medaka population since the Southern/Northern population split. The sequence data suggest that the Southern Japanese medaka existed as a larger older population that went through a relatively recent bottleneck approximately 10,000 years ago. In addition, we detect patterns of recent positive selection in the Southern population. These data indicate that the genetic structure of the Kiyosu medaka samples is suitable for the establishment of a vertebrate near-isogenic panel and therefore inbreeding of 200 lines based on this population has commenced. Progress of this project can be tracked at http://www.ebi.ac.uk/birney-srv/medaka-ref-panel

    SNP array-based whole genome homozygosity mapping as the first step to a molecular diagnosis in patients with Charcot-Marie-Tooth disease

    Get PDF
    Considerable non-allelic heterogeneity for autosomal recessively inherited Charcot-Marie-Tooth (ARCMT) disease has challenged molecular testing and often requires a large amount of work in terms of DNA sequencing and data interpretation or remains unpractical. This study tested the value of SNP array-based whole-genome homozygosity mapping as a first step in the molecular genetic diagnosis of sporadic or ARCMT in patients from inbred families or outbred populations with the ancestors originating from the same geographic area. Using 10 K 2.0 and 250 K Nsp Affymetrix SNP arrays, 15 (63%) of 24 CMT patients received an accurate genetic diagnosis. We used our Java-based script eHoPASA CMT—easy Homozygosity Profiling of SNP arrays for CMT patients to display the location of homozygous regions and their extent of marker count and base-pairs throughout the whole genome. CMT4C was the most common genetic subtype with mutations detected in SH3TC2, one (p.E632Kfs13X) appearing to be a novel founder mutation. A sporadic patient with severe CMT was homozygous for the c.250G > C (p.G84R) HSPB1 mutation which has previously been reported to cause autosomal dominant dHMN. Two distantly related CMT1 patients with early disease onset were found to carry a novel homozygous mutation in MFN2 (p.N131S). We conclude that SNP array-based homozygosity mapping is a fast, powerful, and economic tool to guide molecular genetic testing in ARCMT and in selected sporadic CMT patients

    A highly compact packaging concept for ultrasound transducer arrays embedded in neurosurgical needles

    Get PDF
    State-of-the-art neurosurgery intervention relies heavily on information from tissue imaging taken at a pre-operative stage. However, the data retrieved prior to performing an opening in the patient’s skull may present inconsistencies with respect to the tissue position observed by the surgeon during intervention, due to both the pulsing vasculature and possible displacements of the brain. The consequent uncertainty of the actual tissue position during the insertion of surgical tools has resulted in great interest in real-time guidance techniques. Ultrasound guidance during neurosurgery is a promising method for imaging the tissue while inserting surgical tools, as it may provide high resolution images. Microfabrication techniques have enabled the miniaturisation of ultrasound arrays to fit needle gauges below 2 mm inner diameter. However, the integration of array transducers in surgical needles requires the development of advanced interconnection techniques that can provide an interface between the microscale array elements and the macroscale connectors to the driving electronics. This paper presents progress towards a novel packaging scheme that uses a thin flexible printed circuit board (PCB) wound inside a surgical needle. The flexible PCB is connected to a probe at the tip of the needle by means of magnetically aligned anisotropic conductive paste. This bonding technology offers higher compactness compared to conventional wire bonding, as the individual electrical connections are isolated from one another within the volume of the paste line, and applies a reduced thermal load compared to thermo-compression or eutectic packaging techniques. The reduction in the volume required for the interconnection allows for denser wiring of ultrasound probes within interventional tools. This allows the integration of arrays with higher element counts in confined packages, potentially enabling multi-modality imaging with Raman, OCT, and impediography. Promising experimental results and a prototype needle assembly are presented to demonstrate the viability of the proposed packaging scheme. The progress reported in this work are steps towards the production of fully-functional imaging-enabled needles that can be used as surgical guidance tools

    Combining Computational Prediction of Cis-Regulatory Elements with a New Enhancer Assay to Efficiently Label Neuronal Structures in the Medaka Fish

    Get PDF
    The developing vertebrate nervous system contains a remarkable array of neural cells organized into complex, evolutionarily conserved structures. The labeling of living cells in these structures is key for the understanding of brain development and function, yet the generation of stable lines expressing reporter genes in specific spatio-temporal patterns remains a limiting step. In this study we present a fast and reliable pipeline to efficiently generate a set of stable lines expressing a reporter gene in multiple neuronal structures in the developing nervous system in medaka. The pipeline combines both the accurate computational genome-wide prediction of neuronal specific cis-regulatory modules (CRMs) and a newly developed experimental setup to rapidly obtain transgenic lines in a cost-effective and highly reproducible manner. 95% of the CRMs tested in our experimental setup show enhancer activity in various and numerous neuronal structures belonging to all major brain subdivisions. This pipeline represents a significant step towards the dissection of embryonic neuronal development in vertebrates

    Structural Model of the Rev Regulatory Protein from Equine Infectious Anemia Virus

    Get PDF
    Rev is an essential regulatory protein in the equine infectious anemia virus (EIAV) and other lentiviruses, including HIV-1. It binds incompletely spliced viral mRNAs and shuttles them from the nucleus to the cytoplasm, a critical prerequisite for the production of viral structural proteins and genomic RNA. Despite its important role in production of infectious virus, the development of antiviral therapies directed against Rev has been hampered by the lack of an experimentally-determined structure of the full length protein. We have used a combined computational and biochemical approach to generate and evaluate a structural model of the Rev protein. The modeled EIAV Rev (ERev) structure includes a total of 6 helices, four of which form an anti-parallel four-helix bundle. The first helix contains the leucine-rich nuclear export signal (NES). An arginine-rich RNA binding motif, RRDRW, is located in a solvent-exposed loop region. An ERLE motif required for Rev activity is predicted to be buried in the core of modeled structure where it plays an essential role in stabilization of the Rev fold. This structural model is supported by existing genetic and functional data as well as by targeted mutagenesis of residues predicted to be essential for overall structural integrity. Our predicted structure should increase understanding of structure-function relationships in Rev and may provide a basis for the design of new therapies for lentiviral diseases

    Effect of garlic on blood pressure: A systematic review and meta-analysis

    Get PDF
    The electronic version of this article is the complete one and can be found online at the publisher's website.Background: Non-pharmacological treatment options for hypertension have the potential to reduce the risk of cardiovascular disease at a population level. Animal studies have suggested that garlic reduces blood pressure, but primary studies in humans and non-systematic reviews have reported mixed results. With interest in complementary medicine for hypertension increasing, it is timely to update a systematic review and meta-analysis from 1994 of studies investigating the effect of garlic preparations on blood pressure. Methods: We searched the Medline and Embase databases for studies published between 1955 and October 2007. Randomised controlled trials with true placebo groups, using garlic-only preparations, and reporting mean systolic and/or diastolic blood pressure (SBP/DBP) and standard deviations were included in the meta-analysis. We also conducted subgroup meta-analysis by baseline blood pressure (hypertensive/normotensive), for the first time. Meta-regression analysis was performed to test the associations between blood pressure outcomes and duration of treatment, dosage, and blood pressure at start of treatment. Results: Eleven of 25 studies included in the systematic review were suitable for meta-analysis. Meta-analysis of all studies showed a mean decrease of 4.6 ± 2.8 mm Hg for SBP in the garlic group compared to placebo (n = 10; p = 0.001), while the mean decrease in the hypertensive subgroup was 8.4 ± 2.8 mm Hg for SBP (n = 4; p < 0.001), and 7.3 ± 1.5 mm Hg for DBP (n = 3; p < 0.001). Regression analysis revealed a significant association between blood pressure at the start of the intervention and the level of blood pressure reduction (SBP: R = 0.057; p = 0.03; DBP: R = -0.315; p = 0.02). Conclusion: Our meta-analysis suggests that garlic preparations are superior to placebo in reducing blood pressure in individuals with hypertension.Karin Ried, Oliver R. Frank, Nigel P. Stocks, Peter Fakler and Thomas Sulliva

    Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.

    Get PDF
    BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).Supported by a career development award from the National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) (K08HL114642 to Dr. Stitziel) and by the Foundation for Barnes–Jewish Hospital. Dr. Peloso is supported by the National Heart, Lung, and Blood Institute of the NIH (award number K01HL125751). Dr. Kathiresan is supported by a Research Scholar award from the Massachusetts General Hospital, the Donovan Family Foundation, grants from the NIH (R01HL107816 and R01HL127564), a grant from Fondation Leducq, and an investigator-initiated grant from Merck. Dr. Merlini was supported by a grant from the Italian Ministry of Health (RFPS-2007-3-644382). Drs. Ardissino and Marziliano were supported by Regione Emilia Romagna Area 1 Grants. Drs. Farrall and Watkins acknowledge the support of the Wellcome Trust core award (090532/Z/09/Z), the British Heart Foundation (BHF) Centre of Research Excellence. Dr. Schick is supported in part by a grant from the National Cancer Institute (R25CA094880). Dr. Goel acknowledges EU FP7 & Wellcome Trust Institutional strategic support fund. Dr. Deloukas’s work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research (NIHR). Drs. Webb and Samani are funded by the British Heart Foundation, and Dr. Samani is an NIHR Senior Investigator. Dr. Masca was supported by the NIHR Leicester Cardiovascular Biomedical Research Unit (BRU), and this work forms part of the portfolio of research supported by the BRU. Dr. Won was supported by a postdoctoral award from the American Heart Association (15POST23280019). Dr. McCarthy is a Wellcome Trust Senior Investigator (098381) and an NIHR Senior Investigator. Dr. Danesh is a British Heart Foundation Professor, European Research Council Senior Investigator, and NIHR Senior Investigator. Drs. Erdmann, Webb, Samani, and Schunkert are supported by the FP7 European Union project CVgenes@ target (261123) and the Fondation Leducq (CADgenomics, 12CVD02). Drs. Erdmann and Schunkert are also supported by the German Federal Ministry of Education and Research e:Med program (e:AtheroSysMed and sysINFLAME), and Deutsche Forschungsgemeinschaft cluster of excellence “Inflammation at Interfaces” and SFB 1123. Dr. Kessler received a DZHK Rotation Grant. The analysis was funded, in part, by a Programme Grant from the BHF (RG/14/5/30893 to Dr. Deloukas). Additional funding is listed in the Supplementary Appendix.This is the author accepted manuscript. The final version is available from the Massachusetts Medical Society via http://dx.doi.org/10.1056/NEJMoa150765
    corecore