16 research outputs found

    Aquaporins in the wild: natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families.</p> <p>Results</p> <p>PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity.</p> <p>Conclusions</p> <p>Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions.</p

    Molecular divergence in tropical tree populations occupying environmental mosaics

    No full text
    Unveiling the genetic basis of local adaptation to environmental variation is a major goal in molecular ecology. In rugged landscapes characterized by environmental mosaics, living populations and communities can experience steep ecological gradients over very short geographical distances. In lowland tropical forests, interspecific divergence in edaphic specialization (for seasonally flooded bottomlands and seasonally dry terra firme soils) has been proven by ecological studies on adaptive traits. Some species are nevertheless capable of covering the entire span of the gradient; intraspecific variation for adaptation to contrasting conditions may explain the distribution of such ecological generalists. We investigated whether local divergence happens at small spatial scales in two stands of Eperua falcata (Fabaceae), a widespread tree species of the Guiana Shield. We investigated Single Nucleotide Polymorphisms (SNP) and sequence divergence as well as spatial genetic structure (SGS) at four genes putatively involved in stress response and three genes with unknown function. Significant genetic differentiation was observed among sub-populations within stands, and eight SNP loci showed patterns compatible with disruptive selection. SGS analysis showed genetic turnover along the gradients at three loci, and at least one haplotype was found to be in repulsion with one habitat. Taken together, these results suggest genetic differentiation at small spatial scale in spite of gene flow. We hypothesize that heterogeneous environments may cause molecular divergence, possibly associated to local adaptation in E. falcata

    Data from: Molecular divergence in tropical tree populations occupying environmental mosaics

    No full text
    Unveiling the genetic basis of local adaptation to environmental variation is a major goal in molecular ecology. In rugged landscapes characterised by environmental mosaics, living populations and communities can experience steep ecological gradients over very short geographical distances. In lowland tropical forests, interspecific divergence in edaphic specialization (for seasonally flooded bottomlands and seasonally dry terra firme soils) has been proven by ecological studies on adaptive traits. Some species are nevertheless capable of covering the entire span of the gradient; intraspecific variation for adaptation to contrasting conditions may explain the distribution of such ecological generalists. We investigated whether local divergence happens at small spatial scales in two stands of Eperua falcata (Fabaceae), a widespread tree species of the Guiana Shield. We investigated SNP and sequence divergence as well as spatial genetic structure (SGS) at four genes putatively involved in stress response and three genes with unknown function. Significant genetic differentiation was observed among sub-populations within stands, and eight SNP loci showed patterns compatible with disruptive selection. SGS analysis showed genetic turnover along the gradients at three loci, and at least one haplotype was found to be in repulsion with one habitat. Taken together, these results suggest genetic differentiation at small spatial scale in spite of gene flow. We hypothesize that heterogeneous environments may cause molecular divergence, possibly associated to local adaptation in E. falcata

    Aquaporins in the wild : natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species

    No full text
    Background: Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families. Results: PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity. Conclusions: Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions

    Genome wide association mapping for resistance to multiple fungal pathogens in a panel issued from a broad composite cross-population of tetraploid wheat Triticum turgidum

    No full text
    Few resistance genes providing defence against the major fungal diseases septoria tritici blotch (STB), septoria nodorum blotch, leaf rust (LR), and an emerging wheat blast disease have been identified in durum wheat. We identified sixteen fungal disease-associated QTL through genome-wide association mapping of 180 inbred lines sampled from a durum wheat Composite Cross-population. Two STB resistance-associated QTL mapped to chromosome 3A, one of which colocalizes with Stb6, a known resistance gene previously identified in bread wheat. This partial resistance could be conferred by a new allele of Stb6 or another paralogous gene. The second locus is associated with a reduction in pycnidia density, a recently identified and poorly understood form of resistance. A resistance QTL strongly associated with LR, and colocalizing with Lr61, was observed in a 3.24 Mbp region on chromosome 6B. QTL mapping of LR resistance following treatment by chitin used in the context of inducer treatment was also investigated. Using a combination of resistance alleles at these loci could confer durable resistance to multiple fungal diseases and aid durum wheat breeders in their fight against these fungal pathogens

    Association mapping for wood quality in Pinus pinaster Aquitaine breeding population

    No full text
    Improvement of wood quality related traits is currently hampered by costly chemical and technological assays and the necessity to wait until the trees are nearly mature to evaluate wood properties. The availability of a vast quantity of genomic data opens now a new avenue to identify early selection criteria based on molecular information and therefore increase selection efficiency. Association mapping is becoming a method of choice to identify QTN (quantitative trait nucleotide) that contribute to complex trait variation. The implementation of this approach requires on the one hand knowledge of the molecular mechanisms underlying trait variation and polymorphism within candidate genes, and on the other hand the availability of phenotypically well characterized genetic material. We are developing this strategy in the frame of the French maritime pine breeding program, an economically important forest tree species in the South Western Europe. About 500 trees from the breeding population were evaluated for wood physical and chemical properties through the analysis of 2,800 half-sib progenies and 1,500 clones in 8 field tests. These same trees are being genotyped at 185 SNPs obtained from the sequencing of 41 candidate genes, and an additional set of 200 eSNPs detected in 147 EST-contigs (to be used as control). Statistical association between the breeding values of the 500 trees and their respective genotypes will be tested using mixed models accounting for relatedness among individuals of the breeding population
    corecore