64 research outputs found

    Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth

    Get PDF
    Ellagic acid (EA) is a polyphenolic compound that can be found as a naturally occurring hydrolysis product of ellagitannins in pomegranates, berries, grapes, green tea and nuts. Previous studies have reported the antitumor properties of EA mainly using in vitro models. No data are available about EA influence on bladder cancer cell invasion of the extracellular matrix triggered by vascular endothelial growth factor-A (VEGF-A), an angiogenic factor associated with disease progression and recurrence, and tumor growth in vivo. In this study, we have investigated EA activity against four different human bladder cancer cell lines (i.e., T24, UM-UC-3, 5637 and HT-1376) by in vitro proliferation tests (measuring metabolic and foci forming activity), invasion and chemotactic assays in response to VEGF-A and in vivo preclinical models in nude mice. Results indicate that EA exerts anti-proliferative effects as a single agent and enhances the antitumor activity of mitomycin C, which is commonly used for the treatment of bladder cancer. EA also inhibits tumor invasion and chemotaxis, specifically induced by VEGF-A, and reduces VEGFR-2 expression. Moreover, EA down-regulates the expression of programmed cell death ligand 1 (PD-L1), an immune checkpoint involved in immune escape. EA in vitro activity was confirmed by the results of in vivo studies showing a significant reduction of the growth rate, infiltrative behavior and tumor-associated angiogenesis of human bladder cancer xenografts. In conclusion, these results suggest that EA may have a potential role as an adjunct therapy for bladder cancer

    NF-κB is activated in response to temozolomide in an AKT-dependent manner and confers protection against the growth suppressive effect of the drug.

    Get PDF
    BACKGROUND: Most DNA-damaging chemotherapeutic agents activate the transcription factor nuclear factor κB (NF-κB). However, NF-κB activation can either protect from or contribute to the growth suppressive effects of the agent. We previously showed that the DNA-methylating drug temozolomide (TMZ) activates AKT, a positive modulator of NF-κB, in a mismatch repair (MMR) system-dependent manner. Here we investigated whether NF-κB is activated by TMZ and whether AKT is involved in this molecular event. We also evaluated the functional consequence of inhibiting NF-κB on tumor cell response to TMZ. METHODS: AKT phosphorylation, NF-κB transcriptional activity, IκB-α degradation, NF-κB2/p52 generation, and RelA and NF-κB2/p52 nuclear translocation were investigated in TMZ-treated MMR-deficient (HCT116, 293TLα-) and/or MMR-proficient (HCT116/3-6, 293TLα+, M10) cells. AKT involvement in TMZ-induced activation of NF-κB was addressed in HCT116/3-6 and M10 cells transiently transfected with AKT1-targeting siRNA or using the isogenic MMR-proficient cell lines pUSE2 and KD12, expressing wild type or kinase-dead mutant AKT1. The effects of inhibiting NF-κB on sensitivity to TMZ were investigated in HCT116/3-6 and M10 cells using the NF-κB inhibitor NEMO-binding domain (NBD) peptide or an anti-RelA siRNA. RESULTS: TMZ enhanced NF-κB transcriptional activity, activated AKT, induced IκB-α degradation and RelA nuclear translocation in HCT116/3-6 and M10 but not in HCT116 cells. In M10 cells, TMZ promoted NF-κB2/p52 generation and nuclear translocation and enhanced the secretion of IL-8 and MCP-1. TMZ induced RelA nuclear translocation also in 293TLα+ but not in 293TLα- cells. AKT1 silencing inhibited TMZ-induced IκB-α degradation and NF-κB2/p52 generation. Up-regulation of NF-κB transcriptional activity and nuclear translocation of RelA and NF-κB2/p52 in response to TMZ were impaired in KD12 cells. RelA silencing in HCT116/3-6 and M10 cells increased TMZ-induced growth suppression. In M10 cells NBD peptide reduced basal NF-κB activity, abrogated TMZ-induced up-regulation of NF-κB activity and increased sensitivity to TMZ. In HCT116/3-6 cells, the combined treatment with NBD peptide and TMZ produced additive growth inhibitory effects. CONCLUSION: NF-κB is activated in response to TMZ in a MMR- and AKT-dependent manner and confers protection against drug-induced cell growth inhibition. Our findings suggest that a clinical benefit could be obtained by combining TMZ with NF-κB inhibitors

    Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding

    Get PDF
    Vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase transmembrane receptor that has also a soluble isoform containing most of the extracellular ligand binding domain (sVEGFR-1). VEGF-A binds to both VEGFR-2 and VEGFR-1, whereas placenta growth factor (PlGF) interacts exclusively with VEGFR-1. In this study we generated an anti-VEGFR-1 mAb (D16F7) by immunizing BALB/C mice with a peptide that we had previously reported to inhibit angiogenesis and endothelial cell migration induced by PlGF. D16F7 did not affect binding of VEGF-A or PlGF to VEGFR-1, thus allowing sVEGFR-1 to act as decoy receptor for these growth factors, but it hampered receptor homodimerization and activation. D16F7 inhibited both the chemotactic response of human endothelial, myelomonocytic and melanoma cells to VEGFR-1 ligands and vasculogenic mimicry by tumor cells. Moreover, D16F7 exerted in vivo antiangiogenic effects in a matrigel plug assay. Importantly, D16F7 inhibited tumor growth and was well tolerated by B6D2F1 mice injected with syngeneic B16F10 melanoma cells. The antitumor effect was associated with melanoma cell apoptosis, vascular abnormalities and decrease of both monocyte/macrophage infiltration and myeloid progenitor mobilization. For all the above, D16F7 may be exploited in the therapy of metastatic melanoma and other tumors or pathological conditions involving VEGFR-1 activation

    (1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis

    Get PDF
    OBJECTIVE: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis. METHODS: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by (1)H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated. RESULTS: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98). CONCLUSION: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of M

    The 2014 Ebola virus disease outbreak in Pujehun, Sierra Leone: epidemiology and impact of interventions

    Full text link
    BACKGROUND: In July 2014, an outbreak of Ebola virus disease (EVD) started in Pujehun district, Sierra Leone. On January 10th, 2015, the district was the first to be declared Ebola-free by local authorities after 49 cases and a case fatality rate of 85.7 %. The Pujehun outbreak represents a precious opportunity for improving the body of work on the transmission characteristics and effects of control interventions during the 2014–2015 EVD epidemic in West Africa. METHODS: By integrating hospital registers and contact tracing form data with healthcare worker and local population interviews, we reconstructed the transmission chain and investigated the key time periods of EVD transmission. The impact of intervention measures has been assessed using a microsimulation transmission model calibrated with the collected data. RESULTS: The mean incubation period was 9.7 days (range, 6–15). Hospitalization rate was 89 %. The mean time from the onset of symptoms to hospitalization was 4.5 days (range, 1–9). The mean serial interval was 13.7 days (range, 2–18). The distribution of the number of secondary cases (R(0) = 1.63) was well fitted by a negative binomial distribution with dispersion parameter k = 0.45 (95 % CI, 0.19–1.32). Overall, 74.3 % of transmission events occurred between members of the same family or extended family, 17.9 % in the community, mainly between friends, and 7.7 % in hospital. The mean number of contacts investigated per EVD case raised from 11.5 in July to 25 in September 2014. In total, 43.0 % of cases were detected through contact investigation. Model simulations suggest that the most important factors determining the probability of disease elimination are the number of EVD beds, the mean time from symptom onset to isolation, and the mean number of contacts traced per case. By assuming levels and timing of interventions performed in Pujehun, the estimated probability of eliminating an otherwise large EVD outbreak is close to 100 %. CONCLUSIONS: Containment of EVD in Pujehun district is ascribable to both the natural history of the disease (mainly transmitted through physical contacts, long generation time, overdispersed distribution of secondary cases per single primary case) and intervention measures (isolation of cases and contact tracing), which in turn strongly depend on preparedness, population awareness, and compliance. Our findings are also essential to determine a successful ring vaccination strategy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12916-015-0524-z) contains supplementary material, which is available to authorized users

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Comparative Genomics Suggests that the Fungal Pathogen Pneumocystis Is an Obligate Parasite Scavenging Amino Acids from Its Host's Lungs

    Get PDF
    Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the 7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established experimental model of the disease. We predicted 8’085 (redundant) peptides and 14.9% of them were mapped onto the KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control for the annotation procedure (4’974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism (65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes. However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the “amino acid metabolism” category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427, P<0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P<0.0001). This finding strongly suggests that species of the genus Pneumocystis are scavenging amino acids from their host's lung environment. Consequently, they would have no form able to live independently from another organism, and these parasites would be obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to P. jirovecii infection given that the only source of infection would be other humans

    A multi-element psychosocial intervention for early psychosis (GET UP PIANO TRIAL) conducted in a catchment area of 10 million inhabitants: study protocol for a pragmatic cluster randomized controlled trial

    Get PDF
    Multi-element interventions for first-episode psychosis (FEP) are promising, but have mostly been conducted in non-epidemiologically representative samples, thereby raising the risk of underestimating the complexities involved in treating FEP in 'real-world' services

    Targeting tumor-associated macrophages to increase the efficacy of immune checkpoint inhibitors: A glimpse into novel therapeutic approaches for metastatic melanoma

    No full text
    Immune checkpoint inhibitors (ICIs) represent a promising therapeutic intervention for a variety of advanced/metastatic solid tumors, including melanoma, but in a large number of cases, patients fail to establish a sustained anti-tumor immunity and to achieve a long-lasting clinical benefit. Cells of the tumor micro-environment such as tumor-associated M2 macrophages (M2-TAMs) have been reported to limit the efficacy of immunotherapy, promoting tumor immune evasion and progression. Thus, strategies targeting M2-TAMs have been suggested to synergize with immune checkpoint blockade. This review recapitulates the molecular mechanisms by which M2-TAMs promote cancer immune evasion, with focus on the potential cross-talk between pharmacological interventions targeting M2-TAMs and ICIs for melanoma treatment
    corecore