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Abstract: Ellagic acid (EA) is a polyphenolic compound that can be found as a naturally occurring
hydrolysis product of ellagitannins in pomegranates, berries, grapes, green tea and nuts. Previous
studies have reported the antitumor properties of EA mainly using in vitro models. No data are
available about EA influence on bladder cancer cell invasion of the extracellular matrix triggered
by vascular endothelial growth factor-A (VEGF-A), an angiogenic factor associated with disease
progression and recurrence, and tumor growth in vivo. In this study, we have investigated EA activity
against four different human bladder cancer cell lines (i.e., T24, UM-UC-3, 5637 and HT-1376) by
in vitro proliferation tests (measuring metabolic and foci forming activity), invasion and chemotactic
assays in response to VEGF-A and in vivo preclinical models in nude mice. Results indicate that EA
exerts anti-proliferative effects as a single agent and enhances the antitumor activity of mitomycin
C, which is commonly used for the treatment of bladder cancer. EA also inhibits tumor invasion
and chemotaxis, specifically induced by VEGF-A, and reduces VEGFR-2 expression. Moreover, EA
down-regulates the expression of programmed cell death ligand 1 (PD-L1), an immune checkpoint
involved in immune escape. EA in vitro activity was confirmed by the results of in vivo studies
showing a significant reduction of the growth rate, infiltrative behavior and tumor-associated
angiogenesis of human bladder cancer xenografts. In conclusion, these results suggest that EA
may have a potential role as an adjunct therapy for bladder cancer.

Keywords: ellagic acid; polyphenolic compounds; bladder cancer; urothelial cancer; VEGF-A

1. Introduction

Ellagic acid (2,3,7,8-tetrahydroxy-chromeno [5,4,3-cde] hromene-5,10-dione according to the
International Union of Pure and Applied Chemistry) (EA) belongs to the family of polyphenolic
compounds and is a naturally occurring hydrolysis product of ellagitannins, found in pomegranates,
strawberries, raspberries, blackberries, grapes, green tea and nuts. Over the last decades, promising
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evidence about EA antitumor activity has been accumulated, showing that it is able to prevent tumor
growth and metastasis, by inhibiting tumor cell proliferation, inducing apoptosis, breaking DNA
binding to carcinogens and hampering inflammation, angiogenesis, and drug-resistance processes [1,2].

Pomegranate products are among the most promising anti-tumorigenic dietary supplements.
In fact, fermentation of pomegranate juice with Lactobacillus plantarum increases the concentration of
EA and enhances both the antimicrobial activity and anti-proliferative effects of the juice as compared
to fresh unfermented pomegranate juice [3]. EA is further metabolized by intestinal flora to urolithins,
a family of metabolites with different phenolic hydroxylation patterns [4] that have been recently
shown to exert anticancer activity in different tumor models [5-7].

EA antitumor activity was initially suggested after the observation that aromatase, a key enzyme in
breast cancer development which converts androgens to estrogens, is inhibited by polyphenols derived
from fresh pomegranate juice [8]. Subsequently, it was demonstrated that pomegranate fruit extracts
enhance the action of the anti-estrogen tamoxifen in breast cancer cells [9]. Polyphenols also inhibit the
expression of genes codifying for key androgen-synthesizing enzymes and androgen receptors [10]
and EA was found to affect the growth, motility and invasiveness of androgen-independent prostate
cancer [11].

Antitumor activity by pomegranate juice was also reported in various in vivo murine models [12]
and, in particular, EA was shown to exert in vivo therapeutic effects against colon, prostate, breast and
pancreatic cancer [13-17].

Less characterized are, instead, the antitumor effects of EA against bladder cancer that represents
the most common malignant tumor of the urinary system. Bladder tumors include non-muscle-invasive
bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). At diagnosis, most patients
(~75%) present with NMIBC and, even though the 5-year survival is >90%, the recurrence rate is high.
Transurethral resection of the bladder tumor followed by intravesical instillations of mitomycin C or of
Bacillus Calmette-Guérin (BCG) is the treatment of choice for NMIBC according to the risk group [18].
By contrast, MIBC has a poor outcome and requires radical cystectomy with extended lymphadenectomy,
often preceded by cisplatin-based neoadjuvant chemotherapy. High-risk patients will benefit from
cisplatin-containing adjuvant chemotherapy [19]. Moreover, radiotherapy is used when cystectomy is
not a feasible option. Treatment of the metastatic disease relies on a combination chemotherapy protocols,
including gemcitabine and cisplatin or methotrexate, vinblastine, adriamycin and cisplatin.

The high incidence and recurrence rate of NMIBC and the poor survival of MIBC with metastatic
disease make bladder cancer a serious clinical need [19]. Currently, clinical trials are evaluating
targeted therapies including, among others, anti-angiogenic agents, and immunotherapy with immune
checkpoints inhibitors [20]. Indeed, the angiogenic factor vascular endothelial growth factor-A
(VEGEF-A) is highly expressed both in tumor and urine samples of bladder cancer patients and correlates
with poor prognosis, being associated with progression and tumor recurrence [21]. Moreover, the
U.S. Food and Drug Administration (FDA) has recently approved atezolizumab [22], a humanized
monoclonal antibody against the immune checkpoint programmed cell death ligand 1 (PD-L1),
for platinum-treated advanced urothelial cancer. PD-L1 is present on the surface of tumor cells
and in antigen presenting cells; its binding to PD-1, expressed by activated T cells and other immune
cells, generates an immunosuppressive effect, allowing tumor cells to evade immune control.

Some in vitro studies have investigated human bladder cancer cell lines sensitivity to the
antiproliferative and cytotoxic effects of EA [23-25]. Nevertheless, no data are available about
EA influence on bladder cancer cell invasiveness triggered by VEGF-A and tumor growth in vivo.
On this basis, we have investigated EA anti-tumor effects on bladder cancer, using four different
human cancer cell lines (124, UM-UC-3, 5637, HI-1376). The results indicated that, besides exerting
in vitro antiproliferative and apoptotic effects, EA possesses additive or synergistic growth inhibitory
activity in combination with mitomycin C. Treatment with EA also inhibits tumor cell invasion of the
extracellular matrix components in response to VEGF-A, likely through down-regulation of VEGF
receptor type 2 (VEGFR-2) levels, and modulates the expression of the immune checkpoint protein
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PD-L1. Finally, results of the EA antitumor effect obtained in vitro were validated for the first time
in vivo in a murine model of a human bladder cancer.

2. Materials and Methods

2.1. Cell Lines, Culture Conditions and Drugs

The human bladder carcinoma cell lines—T24, UM-UC-3, 5637 and HT-1376—were purchased
from American Type Culture Collection (ATCC, Manassas, VA, USA). Cells were maintained in
RPMI-1640 (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum
(FBS, Sigma-Aldrich), 2 mM L-glutamine, 100 units/mL penicillin, and 100 pug/mL streptomycin
sulfate, at 37 °C in a 5% CO, humidified atmosphere.

The immortalized human endothelial cell line HUV-ST was cultured in Endothelial Growth Factor
Medium (EGM-2; Lonza, Verviers, Belgium) supplemented with 0.4 mg/mL geneticin and 5 ug/mL
puromycin, as described [26]. The human M14 melanoma-derived clones M14-N and M14-NV, which
express comparable levels of the VEGF-A co-receptor neuropilin-1 (NRP-1) but lack or express VEGFR-2,
respectively, were cultured in RPMI-1640 supplemented with 0.8 mg/mL geneticin [27].

For in vitro studies, the stock solution of EA (12 mM; Biostilogit, Florence, Italy) was prepared by
dissolving the drug in dimethyl sulfoxide (DMSO). The final concentration of DMSO was always <0.5%
(v/v) and did not contribute to toxicity. Mitomycin C (ProStrakan, Galashiels, UK) stock solution
(3 mM) was obtained by dissolving the drug in water.

Human umbilical vein endothelial cells (HUVEC), used as a positive control for VEGFR-2, were
isolated from freshly delivered umbilical cords as previously described [28] and cultured in EGM-2,
whereas the lymphoblastoid Raji (ATCC) cell line, used a as positive control for PD-L1 was maintained
in RPMI-1640 culture medium.

2.2. Cell Proliferation Assays

Short-term and long-term effects of EA treatment on cell proliferation of bladder
cancer cell lines were evaluated by using the colorimetric MTS [3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl) 2-(4-sulphophenyl)-2H-tetrazolium, inner salt] assay (CellTiter 96°
AQueous One Solution Cell Proliferation Assay, Promega, Madison, WI, USA), and foci formation
assay, respectively. For MTS assay, cells (2000-4000 cells/well) were dispensed into flat-bottom 96-well
plates, exposed to vehicle or graded concentrations of EA (5-60 uM) and grown at 37 °C in a 5% CO,
humidified atmosphere. Six replica wells were used for each experimental condition. After 3 (for T24,
UM-UC-3 and 5637 cells) or 5 days (for HT-1376 cells, which are characterized by a lower proliferation
rate), 20 uL. of MTS solution was added to each well and cells were incubated at 37 °C for 2 h.
The quantity of colored formazan product, deriving from the reduction of the tetrazolium compound
MTS by metabolically active cells, was measured by absorbance at 490 nm (reference wavelength
620 nm) on a Multiskan™ FC Microplate Photometer (Thermo Fisher Scientific, Waltham, MA, USA).

For the foci assay, cells were plated in triplicate in 6-well plates (200 cells/well for T24, UM-UC-3
and 5637; 300 cells/well for HT-1376) and exposed to vehicle or graded concentrations of EA
(1.25-40 uM). After 7-10 days of culture, colonies were fixed, stained with 0.5% crystal violet in
50% ethanol and counted, as previously described [29]. Only colonies comprising >50 cells were scored
as survival colonies. Chemosensitivity was evaluated in terms of ICs, i.e., the concentration of the
drug capable of inhibiting cell growth by 50%.

2.3. Apoptosis Analysis by Flow Cytometry

For cell cycle and apoptosis analysis of bladder cancer cells in response to EA, T24 cells were
plated in 25 cm? flasks (3 x 10° cells) and exposed to EA (at the ICsq) for 72 h. Cells were then harvested,
washed twice in PBS and fixed in 70% ethanol at —20 °C for 18 h. After centrifugation, cells were
resuspended in 1 mL of hypotonic solution containing 50 pg/mL propidium iodide (PI; Sigma-Aldrich),
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0.1% sodium citrate (w/v), 0.1% Triton-X (v/v), and 10 pg/mL RNase (Roche, Mannheim, Germany),
and incubated on ice in the dark for 30 min before fluorescence activated cell sorting (FACS) analysis.
Data collection was gated utilizing forward light scatter and side light scatter to exclude cell debris
and aggregates. The PI fluorescence was measured on a linear scale using a FACSscan flow cytometer
(Becton Dickinson, Franklin Lakes, NJ, USA). Cell cycle analysis was performed on cell population
excluding sub-G1 population and using the Mod-Fit software version 3.0 (Becton Dickinson).

2.4. Invasion and Migration Assays

An in vitro invasion assay was performed using the Boyden chamber and three-dimensional
tumor spheroid invasion assays. Boyden chambers (Nuclepore, Whatman Incorporated, Clifton, NJ,
USA) were equipped with 8-pum pore diameter polycarbonate filters (Sigma-Aldrich), coated with 20 ug
of Cultrex® basement membrane extract (Trevigen®, Gaithersburg, MD, USA) [28]. Tumor cells were
suspended in RPMI-1640 medium containing 1 ug/mL heparin/0.1% fatty acid-free bovine serum
albumin (BSA; Sigma-Aldrich) (hereafter referred to as invasion medium), with or without EA (at the
ICy5 for each cell line) and pre-incubated for 1 h in a rotating wheel. Cells (2 x 10° in 220 uL) were then
loaded into the upper compartment of the Boyden chambers. Invasion medium (200 pL), containing or
not human VEGF-A (50 ng/mL; Peprotech, Rocky Hill, NJ, USA) or, in selected experiments, epidermal
growth factor (EGF) (50 ng/mL; Peprotech), was added to the lower compartment of the chambers.
Chambers were incubated at 37 °C in a CO; incubator for 2 h to 18 h, depending on the invasive
properties of the tested cell line. Filters were removed from the chambers and cells were fixed in
ethanol for 5 min and stained in 0.5% crystal violet for 15 min. Non-invading cells, adherent to the
upper surface of the filters, were gently removed by wiping with a cotton swab, whereas invading cells,
attached to the lower surface of the filters, were counted under the microscope. Six high-magnification
microscopic fields (x200 magnification), randomly selected on triplicate filters, were scored for each
experimental condition.

For spheroid invasion assay, tumor cells (25,000-30,000 cells/mL) were suspended in RPMI-1640
medium containing 10% FBS and supplemented with methyl cellulose (0.24% final concentration;
Sigma-Aldrich), seeded in 96-well round bottom cell culture plates (100 uL/well; Corning® Costar®
Ultra-Low attachment multi-well, Sigma-Aldrich) and centrifuged at 3000 rpm for 90 min [30].
Plates were then incubated for 24 h under standard culture conditions (5% CO,, at 37 °C) to allow
spheroid formation. Spheroids were collected, embedded individually in 100 uL of 1 mg/mL collagen I
solution (rat tail, Trevigen®), with or without VEGF-A (50 ng/mL) and/or EA, and plated in each well
of a 96-well flat bottom plate, previously coated with 50 uL of collagen I. Three replicates were set up
for each experimental group. Collagen I dilution and neutralization were performed according to the
manufacturer’s instructions. After collagen solidification at 37 °C, 100 uL of invasion medium, with or
without VEGF-A (50 ng/mL) and/or EA, were added and plates incubated overnight at 37 °C for up
to 72-96 h. Spheroids were visualized and photographed using a Nikon Eclipse TS100 microscope in
conjunction with a Nikon DS-Fil high resolution camera (Melville, NY, USA). Measurements were
performed using Adobe Photoshop CS6 software. Invasion area was defined as the distance from the
edge of the spheroid to the cells most distant from the spheroid.

Migration assay was performed in Boyden chambers containing gelatin (5 ug/mL; Sigma-Aldrich)
coated filters and using the same experimental conditions described above for the Boyden chamber
invasion assay [28].

2.5. Western Blot Analysis

For Western blot analysis, cells were washed with cold PBS, lysed with RadioImmunoPrecipitation
Assay (RIPA) buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate,
0.1% SDS) containing 1x cocktail protease inhibitor (Roche). Denatured proteins were separated by
8%—-12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred
to nitrocellulose membrane (GE Healthcare Life Science, Milan, Italy). Membranes were subsequently
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blocked in 5% non-fat dried milk in Tween-Tris-buffered saline (T-TBS) and incubated with the following
primary antibodies: mouse monoclonal anti-Flk-1 (VEGFR-2, clone A3; 1:500 dilution; Santa Cruz
Biotechnology, Santa Cruz, CA, USA), rabbit polyclonal anti-PD-L1 (1:300 dilution; Abcam, Cambridge,
UK) or anti-B-actin (1:10,000; Sigma Aldrich) as a loading control. Goat anti-mouse or anti-rabbit
Ig/Horseradish peroxidase secondary antibodies (Biorad, Hercules, CA, USA) and ECL Western blotting
detection reagents (GE Healthcare Life Science) were used to identify the proteins of interest.

2.6. Evaluation of VEGF-A Secretion and Analysis of VEGFR-2 Phosphorylation

Semi-confluent tumor cell cultures were incubated in 0.1% BSA /RPMI-1640 medium without
FBS for 24 h. Culture supernatants were collected, centrifuged at 600x g for 10 min to remove cells in
suspension, concentrated at least ten-fold in Centriplus concentrators (Amicon, Beverly, MA, USA)
and frozen at —20 °C till use. Cells were detached from the flasks with a solution of 1 mM EDTA
in PBS and the total cell number/culture was recorded. Quantification of the amount of VEGF-A in
the concentrated supernatants was performed using Maxisorp Nunc immunoplates (Nunc, Roskilde,
Denmark) coated with goat anti-VEGF-A IgGs, as previously described [31]. Briefly, detection of the
cytokines was performed with biotinylated goat anti-VEGF (R & D Systems, Abingdon, UK) and
streptavidin-alkaline phosphatase conjugate (1:10,000) (Roche). The reaction was stopped and optical
density at 405 nm was measured in a Microplate reader 3550-UV (Bio-Rad, Hercules, CA, USA).

Modulation of VEGFR-2 phosphorylation in response to VEGF-A in untreated cells or cells
exposed to EA was analyzed using the PathScan® Phospho-VEGFR-2 (Tyr1175) Sandwich Elisa Kit
(Cell Signaling Technology, Danvers, MA, USA).

2.7. In Vivo Study

UM-UC-3 cells (5 x 10°) were injected intramuscularly (i.m.) in the hind leg of 5-weeks old
athymic CD-1 male mice (nu/nu genotype, Charles River, Calco, Milan, Italy). Treatment with EA
(40 mg/Kg) started three days after tumor challenge. The compound was dissolved in 100% DMSO to
the concentration of 10 mg/mL, further diluted in saline to reach a final concentration of 1 mg/mL
and administered intraperitoneally (i.p.) daily for a total of 15 days. Control mice were treated with an
equivalent dilution of vehicle for 15 days.

Body weight (BW) was measured thrice-weekly and toxicity was evaluated on the basis of net
BW reduction. The percentage of net BW variation between the first day of treatment and sacrifice day,
was evaluated according to the following equation:

% net BW variation = [(net BW at observation day — net BW at first day of treatment)/

1
net BW at first day of treatment] x 100 M

Xenograft growth volume was monitored by measuring tumor mass three times a week in two
dimensions by a caliper. Volumes were calculated according to the following formula:

Tumor volume (mm?) = [length (mm) x width? (mm?)]/2 )
Antitumor efficacy of treatment with EA was assessed by the following end-points:
(a) Percentage of tumor volume inhibition (TVI%) in treated vs. control mice, calculated as:

TVI% =100 — [(TV treated/TV control) x 100] 3)

(b) Tumor growth quadrupling time, calculated as the time required for tumor volume to increase
4-fold over initial volume at indicated times, using the formula:

tq =t + (tz — tl)log(Vq/Vl)/log(VZ/Vl) (4)
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where tq is the interpolated quadrupling time; t; and t; are the lower and upper observation
times bracketing the quadrupling tumor volume; Vq = 4V, where V| is the initial tumor volume;
V7 and V; are tumor volumes at the times t; and tp, respectively;

(c) Tumor growth delay index, calculated as the mean treated /control tumor growth quadrupling
time ratio.

Animals were euthanized, for ethical reasons, when tumor volume was 2000 mm?.

At sacrifice, tumors were excised, fixed in 10% buffered formalin solution (v/v), paraffin
embedded and cut into 5 um-thick slices for staining. A set of slides was stained with hematoxylin
eosin for morphological studies and mitosis counts. Additional slides were stained with an
anti-mouse PECAM/CD31 polyclonal antibody (M-20, Santa Cruz Biotechnology) to label blood
vessels (SP115, Abcam, Cambridge, UK). Reactions were revealed by a HRP—DAB Detection Kit
(UCS diagnostic, Rome, Italy).

2.8. Animal Care and Ethics Statement

All procedures involving mice and care were conducted in accordance with the ethical standards,
according to the Declaration of Helsinki, in compliance with our institutional animal care guidelines
and following national and international directives (D.L. 4 March 2014, No. 26; directive 2010/63/EU of
the European parliament and council; Guide for the Care and Use of Laboratory Animals, United States
National Research Council, 2011). The animals were kept in Specific Pathogen-Free (SPF) conditions
using top filter cages; sterilized tap water and food (4RFN, Mucedola, Settimo Milanese, Italy) were
given ad libitum. Experimental protocols were approved by the Institutional Animal Care and Use
Committee (project identification code 619/2015-PR, approved by “Organismo preposto al benessere
degli animali” (O.P.B.A.), University of Rome Tor Vergata, 27-1-2015).

2.9. Statistical Analysis

Results were expressed as arithmetic mean + standard deviation (SD). Difference significance
was tested by an unpaired, two-tailed Student’s t-test. For multiple comparisons, a statistical analysis
of the results was performed by ANOVA, followed by Bonferroni’s post-test. p values < 0.05 were
considered significant.

To evaluate whether the combination of EA plus mitomycin C was synergic, cells were exposed
to each drug alone or in combination with equitoxic concentrations of the drugs. The dose—effect
curves were analyzed by the median-effect method of Chou and Talalay using the Calcusyn Software
as a constant ratio combination (Biosoft, Cambridge, UK). The combination index (CI) indicates a
quantitative measure of the degree of drug interaction in terms of synergistic (CI < 1), additive (CI = 1)
or antagonistic effect (CI > 1) [32].

Immunohistochemical data were analyzed by the Mann-Whitney test (p < 0.0005).

3. Results

3.1. Anti-Proliferative and Apoptotic Effects of EA against Bladder Cancer Cells

The short and long-term effects of graded concentrations of EA (5-60 uM) on cell proliferation
were tested in four different human bladder cancer (grade II-III) cell lines (i.e., T24, UM-UC-3, 5637,
HT-1376) by MTS assay and foci assay, respectively. The results indicated that T24, UM-UC-3 and
5637 cell lines showed similar sensitivity to EA, whereas the HT-1376 cell line, characterized by a
slower proliferation rate, was the most resistant (Table 1).

The dose-dependent anti-proliferative activity of EA in T24 cells is shown in Figure 1A. To further
characterize the inhibitory effect of EA, T24 cells were exposed to an EA concentration corresponding
to the ICsp value (20 uM) or to vehicle and apoptosis induction and cell cycle distribution were
investigated by flow cytometric analysis. Exposure to EA for 72 h resulted in induction of apoptosis
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(Figure 1B) and a higher percentage of cells in the S phase, compared to the vehicle treated control

(Figure 1C).

Table 1. Antiproliferative effects of EA.

Cell Line EA ICs5p MTS Assay (uM) @ EA ICsg Foci Assay (uM) 2
T24 21+15 71+0.5
UM-UC-3 37.8+0.7 79+13
5637 267+ 1.8 76+ 1.1
HT-1376 58.8 + 3.4 19.1 £ 0.5

2 Control cells were exposed to a vehicle and the percentage inhibition values used for the calculation of
ICsps in EA treated samples were evaluated with respect to a DMSO treated control. In all cell lines, DMSO

caused <5% inhibition of cell proliferation as compared to untreated cells. Values are the mean =+ SD of three
independent experiments.
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Figure 1. The anti-proliferative effects of EA are associated with apoptosis and S phase accumulation
in bladder cancer cells. (A) Dose-dependent anti-proliferative effects of EA. T24 cells were exposed to a
vehicle (DMSO 0.3% (v/v)) or graded concentration of EA (5-40 uM). Panels display representative
images showing morphological changes in the control and EA treated cells using phase contrast
microscopy (40x magnification); (B,C) Apoptosis induction in T24 cells. Cells were treated with a
vehicle or 20 uM EA and analyzed by flow cytometry at 72 h. Flow cytometry plots of a representative
experiment indicating subG1 apoptotic cells (B); Histogram represents the mean percentage values
(£SD) of apoptotic cells from three independent experiments (C); The results of statistical analysis
by the Student’s t-test of the differences in the percentage of apoptotic cells were as follows:
EA vs. CTR (untreated cells) or DMSO, p < 0.05 (*); DMSO vs. CTR, not significant (NS); (D) Cell cycle
analysis. T24 cells were treated and processed as described in panels B and C. The results are indicated
as percentages of cells in the different phases of cell cycle at 72 h after treatment and are the means
(—SD) from four independent experiments. Differences between the percentage of cells in S or G1
phases evaluated by the Student’s t-test were as follows: S phase, EA treated cells vs. CTR or DMSO,
p <0.01 (**); G1 phase, EA treated cells vs. CTR or DMSO, p < 0.05 ().
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3.2. EA Enhances the Anti-Proliferative Effects of Mitomycin C

Mitomycin C is a chemotherapeutic agent commonly used for intravesical instillation in bladder
cancer. To test whether treatment with EA might affect the response of bladder cancer cells to
mitomycin C, combination studies were performed using the MTS assay. Tumor cells were initially
exposed to graded concentrations of mitomycin C in order to define the ICsy values for each cell line.
Thereafter, cells were treated with increasing equitoxic concentrations of the two compounds and
combination indexes (CI) were evaluated according to the Chou-Talalay method by the CalcuSyn
program. As indicated in Table 2, UM-UC-3 and 5637 cells were less sensitive to mitomycin C as
compared to T24 and HT-1376 cells. Interestingly, the drug combination resulted in synergistic effects
in three out of four cell lines, with CI comprised between 0.7 and 0.9. The synergistic effect was more
pronounced in the HT-1376 bladder cancer cell line, which is the most resistant to EA, whereas only a
weak additive effect was detected in T24 cells. Interestingly, an analysis of the dose reduction index
(DRI) indicated that addition of EA allowed up to a 2.6-fold reduction of mitomycin C ICsj. These data
represent the first evidence of the feasibility of using EA treatment to potentiate the antitumor activity
of mitomycin C.

Table 2. Antiproliferative effects of mitomycin C as a single agent or in combination with EA.

Mitomycin C (M)+ EA CI at Different FA(%) ?

ICs5p Mitomycin C 2 Dose Reduction

Cell Line (M) 10 50 60 Index (DRI) ©
(M nM + EA uM)
T24 203+75 1092+10) 11(138+15 1.2(185+18) 19
UM-UC-3 504.9 + 89.5 09(185+15) 09(270+20) 0.9 (360 +25) 23
5637 4512 + 524 0.8(180+10) 08(270+15) 0.8 (360 + 20) 22
HT-1376 273 + 34.1 09(90+75 07(130+15) 0.7 (240 + 30) 26

2 ICsps were evaluated by the MTS assay. Values are the mean 4 SD of three independent experiments;
b Combination index (CI) at the indicated fractions affected (FA) was evaluated according to the Chou-Talalay
method combining equitoxic concentrations of mitomycin C and EA; © The DRI values refer to the fold decrease
of mitomycin C IC5ps obtainable when the drug was combined with EA.

3.3. Ellagic Acid Reduces VEGFR-2 Expression in Human Bladder Cancer Cells

Previous studies showed that EA exerts anti-angiogenic effects in breast cancer inhibiting
VEGEFR-2 signaling; these findings were supported by the results of an in silico analysis suggesting
a possible interaction between VEGFR-2 and the polyphenol [16]. Moreover, EA has been reported
to inhibit VEGFR-2 expression in pancreatic cancer cells [17], whereas it did not induce any change
in the receptor levels in breast cancer cells [16]. Here, we have investigated whether the bladder
cancer cell lines tested in our study secrete VEGF-A, express VEGFR-2 and undergo modulation of the
receptor when treated with EA. The results indicated that all cell lines secreted detectable amounts
of VEGF-A in culture supernatants (Figure 2A) and expressed VEGFR-2, albeit to a different extent
(Figure 2B,C). Interestingly, treatment with EA ICs, for 24 h induced a significant reduction of receptor
expression, with percentages of inhibition ranging between 39% and 72% depending on the cell line
tested (Figure 2B,C). However, EA did not affect VEGF-A induced phosphorylation of VEGFR-2.

A 51
4 4

3 4

04 -

T24 um-uc-3 5637 HT-1376

[VEGF-A] (ng/10f cells)

Figure 2. Cont.



Nutrients 2016, 8, 744 9 of 20

HUVEC T24 UM-Uc-3 5637 HT-1376
CTR CTR
Wit ! W o
p-actin
C 1.2 4
3
S 09 4
hd
s
E 06 4 acTrR
=] DEA
w
=
G 0.3 4
o
B 4

UM-uc-3 5637 HT-1376

Figure 2. Treatment with EA reduces VEGFR-2 expression. (A) VEGF-A levels released in tumor
cell culture supernatants. Quantification of the amount of VEGF-A in the concentrated supernatants
of bladder cancer cell lines was performed using Maxisorp Nunc immunoplates coated with goat
anti-VEGF-A IgGs. Results are the mean (£ SD) of three independent determinations; (B) Immunoblot
analysis of VEGFR-2. Western blot analysis of the levels of VEGFR-2 expressed in control (CTR) and in
bladder cancer cell lines, treated with a vehicle (CTR) or exposed to EA for 24 h, at concentrations in the
range of ICsq values for each cell line (i.e., 20 uM, T24; 40 uM, UM-UC-3; 27 uM 5637; 60 uM HT-1376).
HUVEC were loaded as a positive control and B-actin as a loading control; (C) Densitometric analysis.
The relative levels of VEGFR-2 were calculated by densitometric analysis and normalized using 3-actin
expression in each sample. The histogram represents the ratios between the optical densities (O.D.) of
VEGEFR-2 in CTR or EA treated groups and 3-actin. Results are the mean (£SD) of three independent
experiments. Student’s f-test analysis: EA vs. CTR, p < 0.05 (*).

3.4. EA Inhibits Extracellular Matrix Invasion and Migration of Human Bladder Cancer Cells in Response
to VEGF-A

The EA influence on extracellular matrix invasion in response to VEGF-A or to EGF (a VEGFR-2
unrelated stimulus) by bladder cancer cells was tested in Boyden chambers endowed with filters
coated with matrigel. Invasion of T24 cells exposed to VEGF-A was strongly down-modulated by
EA at mildly toxic concentrations (EA ICys5), whereas invasion triggered by EGF was not affected
(Figure 3A,B). The ability of EA to hinder invasiveness of VEGFR-2 expressing bladder cancer cells in
response to VEGF-A was also confirmed using an in vitro three-dimensional spheroid-based assay in
the collagen I matrix (Figure 3C,D).

Consistently, EA markedly reduced invasiveness of UM-UC-3 (Figure 4), 5637 and HT-1376 cells
(Figure 5). Similar EA concentrations also hampered extracellular matrix invasion in response to
VEGF-A by human endothelial cells (Figure Al) which express VEGFR-2 [26]. The requirement of
VEGEFR-2 expression for EA inhibitory effects on extracellular matrix invasion stimulated by VEGF-A
was confirmed in a syngeneic model of human melanoma, using VEGFR-2-negative and -transfected
clones (M14-N and M14-NV, respectively) [27]. In fact, even though invasiveness of M14-N cells, which
express the VEGF-A co-receptor NRP-1 but lack VEGFR-2, was stimulated by VEGF-A, EA inhibited
VEGF-A induced extracellular matrix invasion only by VEGFR-2 positive M14-NV cells, producing no
effects on M14-N cells (Figure A2).

We also investigated the chemotactic response of bladder cancer cells to VEGF-A in Boyden
chambers endowed with gelatin coated filters. A down-modulating effect of EA on the migratory
response of UM-UC-3 cells to VEGF-A was observed, whereas such effect was not observed when
tumor cells were exposed to a VEGFR-2 unrelated stimulus like EGF (Figure 6).
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Figure 3. Treatment with EA inhibits T24 bladder cancer cell invasion in response to VEGF-A, but not
to EGF. Invasion of T24 cells (2 x 10° cells/chamber, 2 h incubation), non-stimulated (CTR) or exposed
to EA ICy5 (10 pM) in response to VEGF-A (50 ng/mL) or to EGF (50 ng/mL), was tested in Boyden
chambers containing matrigel coated filters. Invading cells were counted in six random microscopic
fields for each experimental condition. The histogram represents the arithmetic mean values of migrated
cells/microscopic field + SD of three independent determinations. Results of the statistical analysis
performed by one-way ANOVA, followed by Bonferroni’s post-test for multiple comparison, were as
follows: VEGF-A vs. CTR or EA, p < 0.05; VEGF-A + EA vs. VEGF-A, p < 0.05; EGF vs. CTR or EA,
p <0.05 (*); EGF + EA vs. EGFE, NS (A); Photographs from a representative experiment out of three
are shown (x 100 magnification) (B); For the spheroid assay, T24 cells were embedded in collagen in
the absence or presence of EA (10 uM) and VEGF-A (50 ng/mL). Relative invasion was quantified
as spheroid area on day 3 minus spheroid area on day 0. Results are expressed as mean + SD
of quadruplicate samples. Results of the statistical analysis using one-way ANOVA, followed by
Bonferroni’s post-test, were as follows: VEGF-A vs. CTR or EA, p < 0.05; VEGF-A + EA vs. VEGF-A,
p <0.05 (*) (C). Representative pictures of spheroids taken at 24 and 72 h after embedding cells in
collagen gels (x40 magnification) (D).
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Figure 4. Inhibitory effect of EA on UM-UC-3 cell invasion in response to VEGF-A. Matrigel
invasion assay. Invasion of UM-UC-3 cells (2 x 10° cells/chamber, 4 h incubation), non-stimulated
(CTR) or exposed to EA ICy; (20 uM) in response to VEGF-A (50 ng/mL) was tested in
Boyden chambers containing matrigel coated filters (A,B) or by spheroid invasion assay (C,D).
For matrigel invasion test, invading cells were counted in six random microscopic fields for
each experimental condition. Histogram represents the arithmetic mean values of migrated
cells/microscopic field & SD of three independent determinations. Results of the statistical analysis
using one-way ANOVA, followed by Bonferroni’s post-test, were as follows: VEGF-A vs. CTR or EA,
p < 0.05; VEGF-A + EA vs. VEGF-A, p < 0.05 (*) (A); Photographs from a representative experiment
out of three are shown (x100 magnification) (B); For spheroid invasion assay, UM-UC-3 cells were
embedded in collagen in the absence or presence of EA (20 uM) and VEGEF-A (50 ng/mL). Data are
expressed as mean + SD of quadruplicate samples. Results of the statistical analysis using one-way
ANOVA, followed by Bonferroni’s post-test, were as follows: VEGF-A vs. CTR or EA, p < 0.05;
VEGEF-A + EA vs. VEGF-A, p < 0.05 (*) (C); Representative pictures of spheroids taken at 24 and 96 h
after embedding cells in collagen gels (x40 magnification) (D).
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Ay
VEGF-A + EA

Figure 5. Inhibitory effect of EA on 5637 and HT-1376 cell invasion in response to VEGF-A. Invasion
of 5637 (A,C) and HT-1376 (B,D) cells (2 x 10° cells/chamber, 18 h incubation), non-stimulated
(CTR) or exposed to EA ICys5 of each cell line (13.5 uM for 5637 cells and 30 uM for HT-1376)
in response to VEGF-A (50 ng/mL) was tested in Boyden chambers containing matrigel coated
filters. Invading cells were counted in six random microscopic fields for each experimental condition.
Histograms represent the arithmetic mean values of migrated cells/microscopic field + SD of three
independent determinations. Results of the statistical analysis using one-way ANOVA, followed
by Bonferroni’s post-test, were as follows for both cell lines: VEGF-A vs. CTR or EA, p < 0.05;
VEGEF-A + EA vs. VEGF-A, p < 0.05 (*) (A,B). Photographs from a representative experiment out of
three are shown (%100 magnification) (C,D).
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Figure 6. Treatment with EA inhibits migration of UM-UC-3 cells in response to VEGF-A but not to
EGE. Migration of UM-UC-3 cells (2 x 10° cells/chamber, 18 h incubation), non-stimulated (CTR) or
exposed to EA ICy5 (20 pM) in response to VEGF-A or EGF (50 ng/mL) was tested in Boyden chambers
containing gelatin coated filters. Migrating cells were counted in six random microscopic fields
for each experimental condition. The histogram represents the arithmetic mean values of migrated
cells/microscopic field + SD of three independent determinations. Results of the statistical analysis
using one-way ANOVA, followed by Bonferroni’s post-test, were as follows: VEGF-A vs. CTR or EA,
p <0.05; VEGF-A + EA vs. VEGF-A, p < 0.05; EGF vs. CTR or EA, p < 0.05 (*); EA + EGF vs. EGE,
NS (A); Photographs from a representative experiment out of three are shown (x 100 magnification) (B).
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3.5. Treatment of Bladder Cancer Cells Decrease the Expression of PD-L1

Based on the recent approval by FDA of atezolizumab [22], a humanized monoclonal antibody
against the immune checkpoint PD-L1, for platinum-treated advanced urothelial cancer, we have
investigated the influence of EA on the expression of PD-L1. Immunoblot analysis in UM-UC-3 and
T24 cells showed that EA down-modulated PD-L1 expression in both cell lines (Figure 7). These data
suggest that EA might contribute to reducing tumor immune escape mechanisms that favor disease
progression, potentially enhancing the efficacy of anti-PD-L1 agents.

RAJI UmM-uc-3 T24
Ellagic Acid Ellagic Acid
CTR 24h 48h CTR 24h 48h
- e = " e e o
B - P -3ctin
E 2 £ 1
H % 15 8 o 0.8
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Figure 7. Treatment with EA reduces PD-L1 expression. (A) Western blot analysis of PD-L1 expression
in UM-UC-3 and T24 bladder cancer cells, treated with DMSO vehicle (CTR) or exposed to EA for 24 or
48 h, at a concentration in the range of ICs( values for each cell line (i.e., 20 uM, T24; 40 uM, UM-UC-3).
Raji leukemia cells were loaded as a positive control and (3-actin as loading control; (B) Densitometric
analysis. The relative levels of PD-L1 in UM-UC-3 and T24 cells, respectively, were calculated by
densitometric analysis and normalized by 3-actin expression in each sample. Histograms represent the
ratios between the O.D. of PD-L1 in CTR or EA treated groups and -actin. Data are the mean (£SD)
of three independent experiments. Results of the statistical analysis using one-way ANOVA, followed
by Bonferroni’s post-test, were as follows: in T24 cells, EA 24 h vs. CTR, p < 0.05; in UM-UC-3 and T24
cells, EA 48 h vs. CTR, p < 0.05 (*).

3.6. EA Inhibits In Vivo Bladder Cancer Growth

EA effect on in vivo tumor growth was evaluated by injecting i.m. UM-UC-3 cells in athymic
nude mice. Animals were treated i.p. with 40 mg/kg of EA or with vehicle daily, for a total of 15 days.
A strong reduction in tumor volume was observed in animals treated with EA as compared to control
mice, with a maximum tumor growth inhibition of 61% (Figure 8A). EA administration significantly
increased the tumor growth quadrupling time (EA 12.2 &+ 1 days vs. CTR 8.6 + 1), with a tumor
growth delay index of 1.42 £ 0.09. Importantly, daily administration of EA was well tolerated since no
significant changes in body weight (<5%) were observed during mice treatment, as compared with
control animals treated with vehicle.

Two weeks after treatment start, three mice for each experimental group were sacrificed for tumor
histological analysis. Hematoxylin and eosin staining indicated that 40 mg/kg of EA had a marked
effect on UM-UC-3 cell viability, the number of apoptotic cells being significantly higher than in control
animals. Moreover, tumor sections from EA treated animals showed reduced mitotic activity compared
with control sections. Immunohistochemical analysis revealed a significant decrease of blood vessel
formation in tumor sections obtained from EA treated mice compared with control sections (Figure 8B).
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Figure 8. Treatment with EA inhibits the growth of human bladder xenografts in vivo. UM-UC-3
cells (5 x 10°) were injected in CD1 nude mice. After tumor challenge, mice were randomized
and treated with a vehicle (CTR) or EA (40 mg/kg/die) (seven animals/group). (A) EA inhibits
tumor growth in vivo. Tumor growth was evaluated every other day, as described in Materials
and Methods. Results are the arithmetic mean tumor volumes £ SD. A statistical analysis was
performed by Student’s t-test analysis. The differences in tumor sizes between the control and EA
treated mice were statistically significant from day 7 onward (p < 0.05); (B) EA induces apoptosis
and inhibits angiogenesis in bladder cancer in vivo. Morphology of tumor xenografts was evaluated
after hematoxylin and eosin staining of histological sections obtained from control or EA treated mice.
A massive cancer infiltration in the surrounding tissue is observed in CTR tumor sections, which
is markedly decreased in EA treated samples (4x and 20x). Mitoses and apoptosis were analyzed
by counting the number of mitotic figures or apoptotic cancer cells in 20 high power fields (HPF) at
40x magnification. Vessel formation was analyzed by immunohistochemical staining of tumor sections
with an anti-mouse PECAM/CD31 polyclonal antibody and by counting the number of CD31 positive
vessels in 20 HPF at 40x magnifications. Images display blood vessels in a sample of EA treated
xenograft sections (arrows; 20x) and rare/absent blood vessels in a section from an EA treated mouse
(20x). Box and whisker plots represent the data obtained from three mice for each experimental group
(three serial sections/animal). The top and bottom of each box represent the 75th and 25th percentile,
respectively, and whiskers the 10th and 90th percentiles. Results of the statistical analysis using the
Mann-Whitney test were as follows: EA vs. CTR, p < 0.0001 (***).
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4. Discussion

EA is a dietary-derived polyphenol which has been reported to possess anti-cancer properties.
In this study, we demonstrate for the first time that EA, besides exerting anti-proliferative and apoptotic
effects, inhibits invasion of the extracellular matrix in response to VEGF-A by human bladder cancer
cells. Importantly, in vivo treatment of athymic nude mice significantly reduced tumor size, infiltration
of surrounding tissues and neovessel formation within the tumor mass.

The majority of deaths from MIBC occur in patients with metastatic disease [33] and this appears to
be due to an early spreading of tumor cells during the natural history of the disease [34]. Unfortunately,
the 5-year survival of patients with metastases is only ~8% compared with ~90% of patients with
localized disease. Angiogenic factors, and in particular VEGF-A, have been shown to play a relevant
role in the progression of bladder cancer, being able to stimulate the recruitment of circulating
endothelial progenitors from bone marrow, proliferation and migration of endothelial cells and
formation of new capillary vessels within the tumor [35,36]. Indeed, the humanized monoclonal
antibody anti-VEGF-A bevacizumab has shown promising activity in clinical trials against bladder
cancer [37]. Here, we report that EA is able not only to inhibit human endothelial cell invasion of the
extracellular matrix triggered by VEGF-A, but also to directly hamper bladder cancer cell invasive
behavior. Stimulation of tumor cell invasiveness by the angiogenic factor and the inhibitory effect
of EA required the expression of VEGFR-2. In fact, tumor cells lacking VEGFR-2 did not respond to
VEGF-A and EA did not affect their background extracellular matrix invasion. The anti-angiogenic
properties of EA have been previously demonstrated in several models of solid tumors (reviewed in 1).
In a breast cancer preclinical model, EA was found to exert anti-angiogenic activity likely as a result of a
possible interaction of the compound with the ATP-binding region of the catalytic domain of VEGFR-2
kinase [16]. However, in bladder cancer cells, EA did not inhibit VEGFR-2 auto-phosphorylation
stimulated by VEGF-A, whereas it caused down-modulation of the receptor, as previously observed in a
pancreatic cancer model [17]. The mechanisms responsible for EA-induced VEGFR-2 down-regulation
have not been specifically addressed in this study. However, it can be speculated that EA might
promote receptor degradation due to its possible interaction with VEGFR-2 [16] or decrease receptor
synthesis, based on the recently reported ability of EA to modulate gene expression [38]. VEGFR-2
expression has been previously found to correlate with bladder cancer progression and poor prognosis
in patients [39]. Moreover, immunostaining of cancer specimens has recently shown that VEGFR-2
expression is higher in MIBC than in NMIBC, suggesting that VEGFR-2 levels increase with tumor
invasion [40]. Actually, the four tumor cell lines used in this study were models of bladder cancer
at an advanced stage and all of them were positive for VEGFR-2 expression and produced VEGF-A.
Moreover, VEGF-A was able to increase bladder cancer cell invasiveness. Our findings are in line with
those reported for other tumor cell types, including bladder cancer [41-43]. Tumor cell exposure to EA
specifically inhibited tumor invasion in response to VEGF-A. In fact, the polyphenol was unable to
counteract the stimulatory effect induced by a VEGFR-2 unrelated stimulus, such as EGE.

Interestingly, EA down-regulated the expression of the immune checkpoint PD-L1 in tumor cells,
suggesting that EA might contribute to reducing immunosuppressive mechanisms that favor disease
progression. Moreover, it can be hypothesized that EA might potentiate the immunostimulating
activity of atezolizumab, the anti-PD-L1 agent recently approved for the metastatic disease [44].

Daily administration of EA to animal injected with bladder cancer cells was well tolerated and
induced a significant tumor growth inhibition. This effect was associated with apoptosis induction,
decrease of tumor cell mitotic activity and reduced infiltration of the surrounding tissues. Cell death
and reduced proliferation of bladder cancer cells observed in vivo might be the consequence of the
direct cytotoxic and cytostatic effects of EA and of the reduced formation of vascular structures within
the tumor mass. These data support the potential role of EA in reducing the metastatic potential of
bladder cancer and in enhancing the efficacy of anti-VEGF-A therapies. In regard to the EA dose
associated with in vivo anticancer properties, it appears largely higher than that administered as
dietary supplement in humans. It should be noted that EA pharmacokinetics is quite unfavorable,
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due to low bioavailability as a result of poor absorption, metabolism by intestinal microorganism and
short plasma half-life [45,46]. Nevertheless, future development of EA derivatives or formulations
with improved pharmacokinetics may allow to better define the dose-effect relationship and to reduce
the amount of the active principle to be administered in patients by systemic or local routes.

Although most patients with NMIBC generally have favorable outcomes, local therapy with
chemotherapy mainly based on mitomycin C often requires repeated treatments [47]. Interestingly;,
we found that EA enhanced the antiproliferative effects of mitomycin C. These data suggest that also
a less aggressive disease might benefit from local or systemic therapy with this compound, possibly
reducing the frequency of administration of the chemotherapeutic agent.

5. Conclusions

In conclusion, EA displays marked in vitro and in vivo antitumor activity against human bladder
cancer, as a result of different effects: inhibition of tumor cell proliferation; migration and invasion
of the extracellular matrix in response to VEGF-A; down-modulation of PD-L1; and decreased
tumor-associated angiogenesis. Therefore, nutrients rich in EA or dietary supplements based on
EA can be a useful support for the prevention and/or treatment of bladder cancer.
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Figure Al. Treatment with EA inhibits matrigel invasion by endothelial cells. Invasion of
HUV-ST endothelial cells (2 x 10° cells/chamber, 3 h incubation), non-stimulated (CTR) or
exposed to EA ICy5 (20 uM) in response to VEGF-A (25 ng/mL) was tested in Boyden chambers
containing matrigel coated filters. Invading cells were counted in six random microscopic fields
for each experimental condition. Histogram represents the arithmetic mean values of migrated
cells/microscopic field &+ SD of three independent determinations. Results of statistical analysis
using one-way ANOVA, followed by Bonferroni’s post-test, were as follows: VEGF-A vs. CTR or EA,
p <0.05 (*); VEGF-A + EA vs. VEGF-A, p < 0.05 (*) (A); Photographs from a representative experiment
out of three are shown (x100 magnification) (B).
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Figure A2. VEGFR-2 expression is required for the inhibitory effect of EA on tumor cell invasiveness.
Invasion of M14-NV (VEGFR-2 positive) (A,C) and M14-N (VEGFR-2 negative) (B,D) melanoma cell
clones (2 x 10° cells/chamber, 2 h incubation), non-stimulated (CTR) or exposed to EA ICys5 of each cell
line (15 uM) in response to VEGF-A (50 ng/mL) was tested in Boyden chambers containing matrigel
coated filters. Invading cells were counted in six random microscopic fields for each experimental
condition. Histograms represent the arithmetic mean values of migrated cells/microscopic field £+ SD
of three independent determinations. Results of statistical analysis performed by one-way ANOVA,
followed by Bonferroni’s post-test for multiple comparison, were as follows: in M14-NV cells
VEGF-A vs. CTR or EA, p < 0.05; VEGF-A + EA vs. VEGF-A, p < 0.05 (*); in M14-N cells VEGF-A
or VEGF-A + EA vs. CTR or EA, p < 0.05; VEGF-A + EA vs. VEGF-A, NS (A,B); Photographs from a

representative experiment out of three are shown (x100 magnification) (C,D).
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