2,590 research outputs found

    Dynamical Semigroups for Unbounded Repeated Perturbation of Open System

    Get PDF
    We consider dynamical semigroups with unbounded Kossakowski-Lindblad-Davies generators which are related to evolution of an open system with a tuned repeated harmonic perturbation. Our main result is the proof of existence of uniquely determined minimal trace-preserving strongly continuous dynamical semigroups on the space of density matrices. The corresponding dual W *-dynamical system is shown to be unital quasi-free and completely positive automorphisms of the CCR-algebra. We also comment on the action of dynamical semigroups on quasi-free states

    Conservation laws in Skyrme-type models

    Full text link
    The zero curvature representation of Zakharov and Shabat has been generalized recently to higher dimensions and has been used to construct non-linear field theories which either are integrable or contain integrable submodels. The Skyrme model, for instance, contains an integrable subsector with infinitely many conserved currents, and the simplest Skyrmion with baryon number one belongs to this subsector. Here we use a related method, based on the geometry of target space, to construct a whole class of theories which are either integrable or contain integrable subsectors (where integrability means the existence of infinitely many conservation laws). These models have three-dimensional target space, like the Skyrme model, and their infinitely many conserved currents turn out to be Noether currents of the volume-preserving diffeomorphisms on target space. Specifically for the Skyrme model, we find both a weak and a strong integrability condition, where the conserved currents form a subset of the algebra of volume-preserving diffeomorphisms in both cases, but this subset is a subalgebra only for the weak integrable submodel.Comment: Latex file, 22 pages. Two (insignificant) errors in Eqs. 104-106 correcte

    Steady state fluctuations of the dissipated heat for a quantum stochastic model

    Full text link
    We introduce a quantum stochastic dynamics for heat conduction. A multi-level subsystem is coupled to reservoirs at different temperatures. Energy quanta are detected in the reservoirs allowing the study of steady state fluctuations of the entropy dissipation. Our main result states a symmetry in its large deviation rate function.Comment: 41 pages, minor changes, published versio

    Discrete approximation of the free Fock space

    No full text
    International audienceWe prove that the free Fock space {\F}(\R^+;\C), which is very commonly used in Free Probability Theory, is the continuous free product of copies of the space \C^2. We describe an explicit embeding and approximation of this continuous free product structure by means of a discrete-time approximation: the free toy Fock space, a countable free product of copies of \C^2. We show that the basic creation, annihilation and gauge operators of the free Fock space are also limit of elementary operators on the free toy Fock space. When applying these constructions and results to the probabilistic interpretations of these spaces, we recover some discrete approximations of the semi-circular Brownian motion and of the free Poisson process. All these results are also extended to the higher multiplicity case, that is, {\F}(\R^+;\C^N) is the continuous free product of copies of the space \C^{N+1}

    Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy

    Full text link
    The excitonic recombinations in hexagonal boron nitride (hBN) are investigated with spatially resolved cathodoluminescence spectroscopy in the UV range. Cathodoluminescence images of an individual hBN crystallite reveals that the 215 nm free excitonic line is quite homogeneously emitted along the crystallite whereas the 220 nm and 227 nm excitonic emissions are located in specific regions of the crystallite. Transmission electron microscopy images show that these regions contain a high density of crystalline defects. This suggests that both the 220 nm and 227 nm emissions are produced by the recombination of excitons bound to structural defects

    Integrable theories and loop spaces: fundamentals, applications and new developments

    Get PDF
    We review our proposal to generalize the standard two-dimensional flatness construction of Lax-Zakharov-Shabat to relativistic field theories in d+1 dimensions. The fundamentals from the theory of connections on loop spaces are presented and clarified. These ideas are exposed using mathematical tools familiar to physicists. We exhibit recent and new results that relate the locality of the loop space curvature to the diffeomorphism invariance of the loop space holonomy. These result are used to show that the holonomy is abelian if the holonomy is diffeomorphism invariant. These results justify in part and set the limitations of the local implementations of the approach which has been worked out in the last decade. We highlight very interesting applications like the construction and the solution of an integrable four dimensional field theory with Hopf solitons, and new integrability conditions which generalize BPS equations to systems such as Skyrme theories. Applications of these ideas leading to new constructions are implemented in theories that admit volume preserving diffeomorphisms of the target space as symmetries. Applications to physically relevant systems like Yang Mills theories are summarized. We also discuss other possibilities that have not yet been explored.Comment: 64 pages, 8 figure

    Non-equilibrium states of a photon cavity pumped by an atomic beam

    Full text link
    We consider a beam of two-level randomly excited atoms that pass one-by-one through a one-mode cavity. We show that in the case of an ideal cavity, i.e. no leaking of photons from the cavity, the pumping by the beam leads to an unlimited increase in the photon number in the cavity. We derive an expression for the mean photon number for all times. Taking into account leaking of the cavity, we prove that the mean photon number in the cavity stabilizes in time. The limiting state of the cavity in this case exists and it is independent of the initial state. We calculate the characteristic functional of this non-quasi-free non-equilibrium state. We also calculate the energy flux in both the ideal and open cavity and the entropy production for the ideal cavity.Comment: Corrected energy production calculations and made some changes to ease the readin

    Non Markovian Quantum Repeated Interactions and Measurements

    Full text link
    A non-Markovian model of quantum repeated interactions between a small quantum system and an infinite chain of quantum systems is presented. By adapting and applying usual pro jection operator techniques in this context, discrete versions of the integro-differential and time-convolutioness Master equations for the reduced system are derived. Next, an intuitive and rigorous description of the indirect quantum measurement principle is developed and a discrete non Markovian stochastic Master equation for the open system is obtained. Finally, the question of unravelling in a particular model of non-Markovian quantum interactions is discussed.Comment: 22 page
    corecore