The zero curvature representation of Zakharov and Shabat has been generalized
recently to higher dimensions and has been used to construct non-linear field
theories which either are integrable or contain integrable submodels. The
Skyrme model, for instance, contains an integrable subsector with infinitely
many conserved currents, and the simplest Skyrmion with baryon number one
belongs to this subsector. Here we use a related method, based on the geometry
of target space, to construct a whole class of theories which are either
integrable or contain integrable subsectors (where integrability means the
existence of infinitely many conservation laws). These models have
three-dimensional target space, like the Skyrme model, and their infinitely
many conserved currents turn out to be Noether currents of the
volume-preserving diffeomorphisms on target space. Specifically for the Skyrme
model, we find both a weak and a strong integrability condition, where the
conserved currents form a subset of the algebra of volume-preserving
diffeomorphisms in both cases, but this subset is a subalgebra only for the
weak integrable submodel.Comment: Latex file, 22 pages. Two (insignificant) errors in Eqs. 104-106
correcte