16 research outputs found

    Frass from yellow mealworm (Tenebrio molitor) as plant fertilizer and defense priming agent

    Get PDF
    Producción CientíficaWorld population growth requires the development of a sustainable agriculture that allows feeding all the inhabitants of the planet, while reducing the use of agrochemicals. Currently, the insect farming industry for food and feed production is developing exponentially throughout the world; also producing insect frass with a potential utilization within agriculture and greenhouse industry. In the case of the yellow mealworm (Tenebrio molitor), few studies have been developed so far on the use of frass as a fertilizer, and there are none on its ability to activate plant defenses. By applying 2% sterilized mealworm frass to tomato we found a significant increase in its growth, demonstrating that the microbiota might not play a key role in its fertilizing capacity. In addition, the application of frass to sunflowers under different situations of nutritional deficit allowed us to determine what specific nutrients this fertilizer may be providing to the plant, finding a possible deficiency in the supply of N, but with sufficient amounts of P, K, Ca, and S. With respect to the induction of defenses, mealworm insect frass did not induce local root defenses in a root callose deposition assay in Arabidopsis thaliana under our experimental conditions. However, it activated systemic defenses in Arabidopsis thaliana by inducing defense genes in the absence of pathogen, further enhanced by infection with the necrotrophic fungus Botrytis cinerea. Therefore, mealworm frass could be a good fertilizer resource and plant defense inducer to support development of sustainable agriculture.Norwegian Research Council (grant RCN 250953

    The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana

    Get PDF
    Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis.Peer reviewe

    Oilseed rape seeds with ablated defence cells of the glucosinolate–myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L.

    Get PDF
    Oilseed rape and other crop plants of the family Brassicaceae contain a unique defence system known as the glucosinolate–myrosinase system or the ‘mustard oil bomb’. The ‘mustard oil bomb’ which includes myrosinase and glucosinolates is triggered by abiotic and biotic stress, resulting in the formation of toxic products such as nitriles and isothiocyanates. Myrosinase is present in specialist cells known as ‘myrosin cells’ and can also be known as toxic mines. The myrosin cell idioblasts of Brassica napus were genetically reprogrammed to undergo controlled cell death (ablation) during seed development. These myrosin cell-free plants have been named MINELESS as they lack toxic mines. This has led to the production of oilseed rape with a significant reduction both in myrosinase levels and in the hydrolysis of glucosinolates. Even though the myrosinase activity in MINELESS was very low compared with the wild type, variation was observed. This variability was overcome by producing homozygous seeds. A microspore culture technique involving non-fertile haploid MINELESS plants was developed and these plants were treated with colchicine to produce double haploid MINELESS plants with full fertility. Double haploid MINELESS plants had significantly reduced myrosinase levels and glucosinolate hydrolysis products. Wild-type and MINELESS plants exhibited significant differences in growth parameters such as plant height, leaf traits, matter accumulation, and yield parameters. The growth and developmental pattern of MINELESS plants was relatively slow compared with the wild type. The characteristics of the pure double haploid MINELESS plant are described and its importance for future biochemical, agricultural, dietary, functional genomics, and plant defence studies is discussed

    Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds

    Get PDF
    Many plant phytochemicals constitute binary enzyme–glucoside systems and function in plant defence. In brassicas, the enzyme myrosinase is confined to specific myrosin cells that separate the enzyme from its substrate; the glucosinolates. The myrosinase-catalysed release of toxic and bioactive compounds such as isothiocyanates, upon activation or tissue damage, has been termed ‘the mustard oil bomb’ and characterized as a ‘toxic mine’ in plant defence. The removal of myrosin cells and the enzyme that triggers the release of phytochemicals have been investigated by genetically modifying Brassica napus plants to remove myrosinase-storing idioblasts. A construct with the seed myrosin cell-specific Myr1.Bn1 promoter was used to express a ribonuclease, barnase. Transgenic plants ectopically expressing barnase were embryo lethal. Co-expressing barnase under the control of the Myr1.Bn1 promoter with the barnase inhibitor, barstar, under the control of the cauliflower mosaic virus 35S promoter enabled a selective and controlled death of myrosin cells without affecting plant viability. Ablation of myrosin cells was confirmed with light and electron microscopy, with immunohistological analysis and immunogold-electron microscopy analysis showing empty holes where myrosin cells normally are localized. Further evidence for a successful myrosin cell ablation comes from immunoblots showing absence of myrosinase and negligible myrosinase activity, and autolysis experiments showing negligible production of glucosinolate hydrolysis products. The plants where the myrosin defence cells have been ablated and named ‘MINELESS plants’. The epithiospecifier protein profile and glucosinolate levels were changed in MINELESS plants, pointing to localization of myrosinases and a 35 kDa epithiospecifier protein in myrosin cells and a reduced turnover of glucosinolates in MINELESS plants

    Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review

    No full text
    Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, inducible, induced, direct or indirect depending upon the insect or the degree of insect attack. Firstly, we give an overview of different Brassica species with the main focus on cultivated brassicas. Secondly, we describe insect pests that attack brassicas. Thirdly, we address multiple defence mechanisms, with the main focus on phytoalexins, sulphur, glucosinolates, the glucosinolate-myrosinase system and their breakdown products. In order to develop pest control strategies, it is important to study the chemical ecology, and insect behaviour. We review studies on oviposition regulation, multitrophic interactions involving feeding and host selection behaviour of parasitoids and predators of herbivores on brassicas. Regarding oviposition and trophic interactions, we outline insect oviposition behaviour, the importance of chemical stimulation, oviposition-deterring pheromones, glucosinolates, isothiocyanates, nitriles, and phytoalexins and their importance towards pest management. Finally, we review brassicas as cover and trap crops, and as biocontrol, biofumigant and biocidal agents against insects and pathogens. Again, we emphasise glucosinolates, their breakdown products, and plant volatile compounds as key components in these processes, which have been considered beneficial in the past and hold great prospects for the future with respect to an integrated pest management

    Phytotoxic Effects of Catnip (<i>Nepeta meyeri</i> Benth.) on Early Growth Stages Development and Infection Potential of Field Dodder (<i>Cuscuta campestris</i> Yunck)

    No full text
    Dodder (Cuscuta campestris Yunck.) is one of the most devastating parasitic plants, which reduces quantity and quality of crops. The inhibitory effect of catnip (Nepeta meyeri Benth.) extracts on germination and some seedling characteristics of the C. campestris were investigated in three phases in a laboratory and greenhouse. Aqueous extracts from different organs of N. meyeri were used in bioassays. The N. meyeri extracts reduced germination percent, root and shoot growth, and dry weight of C. campestris seedlings. Moreover, results showed an inhibitory effect of the N. meyeri extracts on the activity of alpha-amylase, protease, and beta-1,3-glucanase enzymes in C. campestris germinating seeds. Under greenhouse conditions, C. campestris seeds were planted with 30-day-old alfalfa plants and irrigated with N. meyeri extracts. The application of extracts from different organs of N. meyeri reduced emergence percent and length of stem and hampered C. campestris attachment to alfalfa. N. meyeri extracts also inhibited the activity of antioxidant enzymes and increased the accumulation of hydrogen peroxide and the malondialdehyde in C. campestris seedlings. The strongest inhibitory effects were observed from flower, leaf, and stem extracts of N. meyeri, respectively. However, after C. campestris attachment to alfalfa plants, treatment by N. meyeri extracts did not exhibit any effect on infestation efficiency and C. campestris growth traits. According to these findings, N. meyeri extract, especially from flower and leaf, may be recommended as a potent bio-control agent to control germination and early stage development of C. campestris
    corecore