69 research outputs found

    Developing and validating a school-based screening tool of Fundamental Movement Skills (FUNMOVES) using Rasch analysis

    Get PDF
    Background A large proportion of children are not able to perform age-appropriate fundamental movement skills (FMS). Thus, it is important to assess FMS so that children needing additional support can be identified in a timely fashion. There is great potential for universal screening of FMS in schools, but research has established that current assessment tools are not fit for purpose. Objective To develop and validate the psychometric properties of a FMS assessment tool designed specifically to meet the demands of universal screening in schools. Methods A working group consisting of academics from developmental psychology, public health and behavioural epidemiology developed an assessment tool (FUNMOVES) based on theory and prior evidence. Over three studies, 814 children aged 4 to 11 years were assessed in school using FUNMOVES. Rasch analysis was used to evaluate structural validity and modifications were then made to FUNMOVES activities after each study based on Rasch results and implementation fidelity. Results The initial Rasch analysis found numerous psychometric problems including multidimensionality, disordered thresholds, local dependency, and misfitting items. Study 2 showed a unidimensional measure, with acceptable internal consistency and no local dependency, but that did not fit the Rasch model. Performance on a jumping task was misfitting, and there were issues with disordered thresholds (for jumping, hopping and balance tasks). Study 3 revealed a unidimensional assessment tool with good fit to the Rasch model, and no further issues, once jumping and hopping scoring were modified. Implications The finalised version of FUNMOVES (after three iterations) meets standards for accurate measurement, is free and able to assess a whole class in under an hour using resources available in schools. Thus FUNMOVES has the potential to allow schools to efficiently screen FMS to ensure that targeted support can be provided and disability barriers removed

    Local spatial regression models : a comparative analysis on soil contamination

    Get PDF
    Spatial data analysis focuses on both attribute and locational information. Local analyses deal with differences across space whereas global analyses deal with similarities across space. This paper addresses an experimental comparative study to analyse the spatial data by some weighted local regression models. Five local regression models have been developed and their estimation capacities have been evaluated. The experimental studies showed that integration of objective function based fuzzy clustering to geostatistics provides some accurate and general models structures. In particular, the estimation performance of the model established by combining the extended fuzzy clustering algorithm and standard regional dependence function is higher than that of the other regression models. Finally, it could be suggested that the hybrid regression models developed by combining soft computing and geostatistics could be used in spatial data analysis

    Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit

    Get PDF
    Background: Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a ‘pouch and wick’ system (n = ~24 replicates per genotype). The mineral composition of 3–6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Results: Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. Conclusions: High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]

    Direct constraint on the Higgs–charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector

    Get PDF
    A search for the Higgs boson decaying into a pair of charm quarks is presented. The analysis uses proton–proton collisions to target the production of a Higgs boson in association with a leptonically decaying W or Z boson. The dataset delivered by the LHC at a centre-of-mass energy of and recorded by the ATLAS detector corresponds to an integrated luminosity of 139 fb−1. Flavour-tagging algorithms are used to identify jets originating from the hadronisation of charm quarks. The analysis method is validated with the simultaneous measurement of WW, WZ and ZZ production, with observed (expected) significances of 2.6 (2.2) standard deviations above the background-only prediction for the (W/Z)Z(→cc¯) process and 3.8 (4.6) standard deviations for the (W/Z)W(→cq) process. The (W/Z)H(→cc¯) search yields an observed (expected) upper limit of 26 (31) times the predicted Standard Model cross-section times branching fraction for a Higgs boson with a mass of , corresponding to an observed (expected) constraint on the charm Yukawa coupling modifier |κc|<8.5 (12.4), at the 95% confidence level. A combination with the ATLAS (W/Z)H,H→bb¯ analysis is performed, allowing the ratio κc/κb to be constrained to less than 4.5 at the 95% confidence level, smaller than the ratio of the b- and c-quark masses, and therefore determines the Higgs-charm coupling to be weaker than the Higgs-bottom coupling at the 95% confidence level

    Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of the electroweak production of two jets in association with a ZγZ\gamma pair with the ZZ boson decaying into two neutrinos. It also presents the search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at s\sqrt{s} = 13 TeV collected with the ATLAS detector corresponding to an integrated luminosity of 139 fb1^{-1}. The event signature, shared by all benchmark processes considered for measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. For electroweak production of ZγZ\gamma in association with two jets, the background-only hypothesis is rejected with an observed (expected) significance of 5.2 (5.1) standard deviations. The measured fiducial cross-section for this process is 1.31±\pm0.29 fb. Observed (expected) upper limit of 0.37 (0.34) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson to a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 (0.017), assuming the 125 GeV Standard Model Higgs boson production cross-section
    corecore