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ORIGINAL PAPER

Local spatial regression models: a comparative analysis
on soil contamination

Bulent Tutmez • Uzay Kaymak • A. Erhan Tercan

� Springer-Verlag 2011

Abstract Spatial data analysis focuses on both attribute

and locational information. Local analyses deal with dif-

ferences across space whereas global analyses deal with

similarities across space. This paper addresses an experi-

mental comparative study to analyse the spatial data by

some weighted local regression models. Five local

regression models have been developed and their estima-

tion capacities have been evaluated. The experimental

studies showed that integration of objective function based

fuzzy clustering to geostatistics provides some accurate

and general models structures. In particular, the estimation

performance of the model established by combining the

extended fuzzy clustering algorithm and standard regional

dependence function is higher than that of the other

regression models. Finally, it could be suggested that the

hybrid regression models developed by combining soft

computing and geostatistics could be used in spatial data

analysis.

Keywords Local regression modelling � GWR � Fuzzy

clustering � Regional dependence function

1 Introduction

In spatial data analysis, each measurement is associated

with a location and there is at least an implied connection

between the location and the measurement. In addition,

spatial relationships are concerned with different values for

any property, which is measured at a set of irregularly

distributed geographic locations in an area. Spatial rela-

tionships between some variables can be modelled in dif-

ferent ways using statistical models. In recent years, a

variety of useful regression models have been developed to

explore the spatial nature of variables (Gao et al. 2006).

Although some global approaches have been employed

for evaluating uncertainties in the systems, they have the

shortcoming that they can mask geographical variations in

relationships. The aim is to construct a regional model on

the basis of locations with measurements and then to use

this model for regional estimations at any desired point

within the area (Şen 2009). For this purpose, local

regression models have been proposed to permit the

exploration of spatial relationships in datasets (Atkinson

and Naser 2010; Harris et al. 2011).

Local modelling has been employed widely in some

disciplines for several decades. However, in some disci-

plines, such as geosciences, environment, ecology and

geography, a focus on methods that account for local

variation and spatially heterogeneous effects has been a

comparatively new development (Lloyd 2006; Waller et al.

2007). Recently, geographically weighted regression

(GWR), which is a useful and effective methodology for

locally modelling relationships, has been developed by

(Fotheringham et al. 1998).

Many spatial datasets have high levels of uncertainty.

The treatment of uncertainty in analysis is going through

a paradigm shift from a probabilistic framework to a
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generalized framework (Tutmez and Tercan 2007). In

recent years some hybrid (Lee 2000), soft computing

(Wong et al. 2001) and machine learning algorithms

(Kanevski et al. 2009) have been proposed for modelling

complex and vague systems. These methods are based on

less restrictive assumptions, and are flexible in modelling

non-linearity and non-constant variable structures (Bogardi

et al. 2003; Sousa and Kaymak 2002).

In this study, in addition to traditional GWR model, four

new model structures are proposed for spatial data analysis

and system modelling. The main motivation of the models

is obtaining regression weights and bandwidths (search

radii) from spatial analysis. For this purpose, objective

function based fuzzy clustering algorithms and regional

dependence functions are used for analysing the spatial

system. The performance of the hybrid model established

by combining the extended fuzzy clustering algorithm and

standard regional dependence function (SRDF) is exhibited

in the paper. The results indicate that the hybrid frame-

works could be found reliable methodologies for spatial

data analysis.

The rest of the paper is organized as follows. The next

section describes the methodological frame and the meth-

ods such as locally weighted regression, GWR, and the

proposed hybrid structure. After that, an experimental

comparative study to appraise the spatially varying data by

the weighted areal regression models is given. Five areal

models are established and their estimation capacities are

assessed via some indicators. Based on the results and a

discussion, the superiority of the hybrid regression models

developed by integrating soft computing and geostatistics

and their contribution to spatial data analysis is presented.

2 Regression modelling for spatial data

Regression analysis is employed to estimate the quantita-

tive functional relationships between response variable and

one or more predictor variables from the measured data. A

common feature of this procedure is that it is applied

globally, that is, to the entire site under study. However, it

is often desirable to examine the relationship at a more

local scale. In this section we first introduce the general

frame of the regression procedure and then give some

alternative local regression models.

2.1 Local regression estimate

From a general statistical point of view, the regression is

employed to describe a relation between a predictor var-

iable (or variables) X and a response variable Y. It is

possible to account for correlated observations by

considering a structure of the following kind in the model

(Waller and Gotway 2004). If the vector of response

variables is multivariate normal, we can express the model

as follows:

Y ¼ lþ e; ð1Þ

where l is the vector of area means, which can be modelled

in different ways and e is the vector of random errors,

which we assume is normally distributed with zero mean

and covariance matrix V (Bivand et al. 2008).

The classical regression equation, in matrix form, can be

given by:

y ¼ Xbþ e ð2Þ

where the vector of parameters to be estimated, b, is

constant in space, this can be taken

b̂ ¼ ðXTXÞ�1XTy: ð3Þ

Spatial evaluation is applied at a ‘global’ level in such a

way that one set of results is generated from the models,

representing one set of relationships, which is assumed to

apply equally across the study area (Harris et al. 2011). An

assumption of global analysis is that the relationship under

study is spatially constant, and thus, the relationships being

characterized are ‘stationary’ over space. However, in most

cases, the relationship varies in space. If the local coefficients

vary in space, it can be taken as an indication of non-

stationary. For this purpose local spatial procedures, which

should deal with the spatial non-stationary of empirical

relationships, must be considered.

2.2 Geographically weighted regression (GWR) model

Fotheringham et al. (1998) proposed GWR model for local

estimation of the parameters given by (3). In the mechanics

of GWR, the observations are weighted in accordance with

their distance from the kernel centre. The parameters for

GWR may be estimated by solving Eq. 4

b̂ðui; viÞ ¼ XT Wðui; viÞX
� ��1

XT Wðui; viÞy; ð4Þ

where b̂ represents an estimate of b, and Wðui; viÞ is an n

by n matrix whose off-diagonal elements are zero and

diagonal elements are geographical weights of each of the

n observed data for regression point I (Fotheringham et al.

2002).

In a standard GWR analysis, instead of Wðui; viÞ; W(i)

can be used as weighting scheme based on the proximity of

the regression point i to the data points around i without an

explicit relationship being stated. There are many weight-

ing schemes which express wij as a continuous function of

distance dij. In practice, the following Gaussian function is

used extensively.
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wij ¼ exp � 1

2

dij

b

� �2
" #

ð5Þ

where dij is the Euclidean distance between the location of

measurement i and the centre of the kernel j, and b is the

bandwidth of the kernel. If i and j coincide, the weighting

of data at that point will be unity and the weighting of the

other data will decrease according to a Gaussian curve as

the distance between i and j increases (Fotheringham et al.

2002).

As can be seen in (5), the weighting has a critical

importance and it completely depends on the bandwidth of

the function. If b is too small, insufficient data fall within

the smoothing window, and a noisy fit, or large variance,

will result (Paez et al. 2002). On the other hand, if b is too

large, the local model may not fit the data well within the

smoothing window, and important features of the mean

function may be distorted or lost completely. That is, the fit

will have large bias (Loader 1999). From an ideal meth-

odological view, one might like to define a separate

bandwidth for each estimation point.

2.3 Standard regional dependence function based

regression (SRDFR) model

In this proposed method, the diagonal weight matrix

Wðui; viÞ in (4) is derived from the spatial relationships

between the variables. In Geostatistics, the spatial vari-

ability in any phenomenon within a site can be measured

by comparing the relative change between two locations.

Two numerical values z(x) and z(x ? h) at two points x and

x ? h separated by the vector h are spatially correlated. As

the distance between these values increases, one would

expect that the spatial correlation decreases and vice versa.

This correlation can be modeled by tools such as the

semivariogram (Goovaerts 1997).

In this study, the point cumulative semimadogram

(PCSM) function (Tutmez et al. 2007) is employed for

evaluating the spatial relationships between the observa-

tions that are mostly irregularly spaced. To overcome a

notational complexity, we consider a measured target

variable Z which is the dependent variable (Y) in regression

framework. The mathematical expression can be given as

follows

cðhiÞ ¼
1

2

XN�1

i¼1

Zc � Zij j ð6Þ

where cðhiÞ is the PCSM value; Zc and Zi are the measured

values at pivot location and other adjacent locations,

respectively.

Madograms are particularly useful for establishing the

range parameter. The PCSM takes the absolute difference

between the measurements Zm and Zm?h. The PCSM is

obtained by the successive summation of the semimado-

grams for irregularly spaced distances. The traditional

experimental variograms may be noisy to infer the

anisotropy features and range values due to squared

experimental deviations. In such cases, madograms are

useful because absolute experimental deviations have less

influence on measure of spatial variability than squared

deviations.

The PCSM can be obtained from data by the following

steps (Tutmez and Hatipoglu 2007):

(a) Calculate distance between the concerned location

and the remaining locations.If there are N locations,

the number of different distances is N - 1,

hiði ¼ 1; . . .;N � 1Þ:
(b) For each pair (pivot and any other location), compute

the half of absolute differences between data values.

By this way, each distance will have its half of

absolute value.

(c) Plot distances versus corresponding successive cumu-

lative sums of half of absolute differences. By using

this procedure, a non-decreasing function which is the

sample PCSM at the pivot location is obtained.

(d) Apply previous steps by considering different pivot

locations, to give N sample PCSMs.

The PCSM leads to a non-decreasing function with

distance. To weight the measured values, the SRDF (Şen

and Şahin 2001; Tutmez and Hatipoglu 2007) can be

applied as a suitable tool. The SRDF provides weights for

different regional locations depending on the distance from

the pivot location. This non-increasing function value is

computed by the following steps:

– Find the maximum PCSM value ðcmÞ:
– Divide all the PCSM values by ðcmÞ: The result is a

scaled form of the sample PCSM values within interval

[0, 1].

– Subtract the dimensionless PCSM values from one at

each distance.

2.4 Fuzzy c-means clustering based regression

(FCMR) model

The model follows the least squares form given by (4). In

the model, the observations are included in the clusters by

their maximum memberships which are obtained from the

clustering application, that is, this model does not need

bandwidth values. The weights are provided by the SRDF

values which are derived from the members of the clusters.

Methodologically, fuzzy clustering algorithms employ

fuzzy partitioning such that a given data point can belong

to several groups with the degree of belongingness
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specified by membership grades between 0 and 1. Let

fx1; x2; . . .xNg be a set of N data objects represented by a

n-dimensional feature vectors xk ¼ x1k; . . .; xnk½ �T2 Rn: A

fuzzy clustering algorithm partitions the data X into M

fuzzy clusters, forming a fuzzy partition in X. A fuzzy

partition can be conveniently represented as a matrix U,

whose elements uik 2 ½0; 1� represent the membership

degree of xk in cluster i. Hence, the ith row of U contains

values of the ith membership function in the fuzzy

partition.

Objective function based fuzzy clustering algorithms

such as fuzzy c-means (FCM) algorithm (Bezdek et al.

1984) minimizes an objective function of the type:

JðX; U;VÞ ¼
XM

i¼1

XN

k¼1

ðuikÞmd2ðxk; viÞ ð7Þ

where V ¼ v1; v2; . . .; vM½ � ; vi 2 Rn is M-tuple cluster

prototypes (centers) which have to be computed, and m 2
ð1;1Þ is a weighting exponent which defines the fuzziness

of the clusters. There are some constraints for the algorithm

as follows:

XM

i¼1

uik ¼ 1; 8k; 0\
XN

k¼1

uik\N; 8i: ð8Þ

The general structure of the distance measure employed

is given by

d2ðxk; viÞ ¼ ðxk � viÞT Aiðxk � viÞ ð9Þ

where the norm matrix Ai is a positive-define symmetric

matrix. The FCM algorithm uses the Euclidian distance

measure.

2.5 Extended fuzzy clustering based regression

(EFCR) model

This model combines fuzzy clustering and local least

squares regression for analyzing spatially varying data. The

review of this hybrid structure discussed in Tutmez (2009,

2011) is presented as follows:

The main difference of the present model is the use of a

new fuzzy clustering algorithm. In this study, we employ

the extended fuzzy clustering (e-FCM) for the structure

identification. The algorithm proposed by Kaymak and

Setnes (2002). Extended fuzzy clustering approach has

some potential advantages. First, the (point) prototypes in

traditional fuzzy clustering are extended to hypervolumes

whose size is determined automatically from the data. It

covers a potential for using e-FCM in regional analysis. In

addition, the merging approach offers a more automated

and computationally less expensive way of determining the

right partition (region).

Volume prototypes extend the cluster prototypes from

points to regions in the clustering space (Krishnapuram and

Kim 2000). The data points xk that fall within the hyper-

sphere, i.e. dðxk; viÞ� ri; are components of the volume

prototype vi
�

and have by definition a membership of 1.0 in

that particular cluster. The size of the volume prototypes is

thus computed by the radius ri.

The radii ri; i ¼ 1; . . .;M can be computed by consid-

ering the fuzzy cluster covariance matrix (Kaymak and

Setnes 2000)

Pi ¼
PN

k¼1 um
ikðxk � viÞðxk � viÞT
PN

k¼1 um
ik

: ð10Þ

The volume of the cluster can be obtained from the

determinant Pij j of the cluster covariance matrix. The

covariance matrix Pi is a positive definite and symmetric

matrix and it can be decomposed such that Pi ¼ QiKiQ
T
i ;

where Qi is orthonormal and Ki is diagonal with nonzero

elements ki1; . . .; kin: The volume prototypes extend a

distance of
ffiffiffiffiffi
kij

p
; j ¼ 1; 2; . . .; n along each eigenvector qij.

For the multidimensional case, the size of radius in each

direction is computed by measuring the distances along the

transformed coordinates as follows:

ffiffiffiffiffi
Ki

p
QT

i AiQi

ffiffiffiffiffi
Ki

p
ð11Þ

where
ffiffiffiffiffi
Ki

p
represents a matrix whose elements are equal to

the square root of the elements of Ki. Applying (11) for the

size of the cluster prototypes one obtains

Ri ¼
ffiffiffiffiffi
Ki

p
QT

i IQi

ffiffiffiffiffi
Ki

p
¼ Ki: ð12Þ

As seen in Fig. 1, different values for the radius are

provided depending on the direction one selects.

Commonly a value between the maximal and minimal

diagonal elements of Kiis employed as the radius. In the

E-FCM algorithm, the selection of the mean radius thus

corresponds to following averaging operation (Kaymak and

Setnes 2002):

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

j¼1

k1=n
ij ¼

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pij j1=n

q
: ð13Þ

Consequently, this selection for the radius leads to a

spherical prototype that preserves the volume of the cluster.

In addition to cluster radii, determining the number of

clusters is other main motivation of the E-FCM algorithm.

For this application, a cluster merging approach, which is

based on similarity (Frigui and Krishnapuram 1996), has

been proposed by Kaymak and Setnes (2000). In fuzzy

clustering, the similarity of two fuzzy sets could be quan-

tified by a fuzzy inclusion measure. Given two fuzzy
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clusters, uiðxkÞ and ujðxkÞ, defined pointwise on X, the

fuzzy inclusion measure is defined as

Iij ¼
PN

k¼1 minðuik; ujkÞ
minð

PN
k¼1 uik;

PN
k¼1 ujkÞ

: ð14Þ

The inclusion measure denotes the ratio of the

cardinality of the intersection of the two fuzzy sets to

the cardinality of one of them. This parameter considers the

contribution to similarity from all data points, both from

those within the volume prototypes and those outside

(Setnes 2001).

As an additional user-defined parameter, the merging

threshold a 2 ½0; 1� is a critical parameter for the extended

clustering algorithm. Kaymak and Setnes (2002) proposed

an adaptive threshold that depends on the number of

clusters in partition at any time:

aðlÞ ¼ 1

MðlÞ � 1
: ð15Þ

where M is the number of clusters. Clusters are merged

when the change in maximum cluster similarity from

iteration (l - 1) to iteration (l) is below a predefined

threshold 21 and the similarity is above the threshold a:

2.6 Extended fuzzy clustering and regional dependence

based regression (EFCRDR) model

From a methodological view, any approach for appraising

spatial data needs to recognize that such data have the funda-

mental property of spatial dependence or spatial autocorrelation

(Haining et al. 2010). The methodology presented in this sec-

tion addresses a bridging between fuzzy clustering and geo-

statistics that is a distinctive methodology within the field of

spatial statistics. The hybrid methodology has several features

that distinguish it from the methodologies for analyzing spatial

variation associated with regional data. It determines the

regions (clusters) automatically from the data by computa-

tionally less expensive way. In addition, the estimated values of

regression model are obtained from the spatial dependence

measures which are the central part of geostatistical analysis.

The model first defines the structure of the system by

extended fuzzy clustering and then builds a weighted

regression model that uses the SRDF described. Determi-

nation of the regression weights from spatial analysis is the

corner stone of the model.

In this method, each cluster represents a local linear

model. The consequent parameter vectors hi; i ¼
1; 2; . . .; c; can be estimated independently by the least-

squares method (Babuska 1998). The inputs of the

regression model are given as follows:

X ¼

xT
1

xT
2

..

.

xT
N

2

66664

3

77775
; y ¼

y1

y2

..

.

yN

2

66664

3

77775
;

Wi ¼

wi1 0 0 0

0 wi2 0 0

0 0 wi3 0

0 0 0 wiN

2

6664

3

7775
:

ð16Þ

In the proposed model, the output parameters for the ith

cluster, ai and bi are connected by a single parameter

vector hi as follows:

hi ¼ aT
i ; bi

� �T
: ð17Þ

Adding a unitary column to X gives the extended

predictor matrix Xe:

Xe ¼ ½X; 1�: ð18Þ

The SRDF values of the observations serve as the

weights expressing the relevance of the data pair xk; yk to

that local model. If the columns of Xe are linearly

independent, then

hðxk; ykÞ ¼ XT
e Wðxk; ykÞXe

� ��1
XT

e Wðxk; ykÞy ð19Þ

is the least-squares solution of y ¼ Xehþ e where the kth

data pair ðxk; ykÞ is spatially weighted by wik. The

parameters ai and bi are given by:

ai ¼ ½h1; h2; . . .; hp�; bi ¼ hpþ1 : ð20Þ

3 Case studies

3.1 Data set

The case studies have been conducted using Meuse data set

(Rikken and van Rijn 1993; Burrough and McDonell 1998)

Fig. 1 The E-FCM radius and the cluster volume for a two

dimensional case (After Kaymak and Setnes 2002)
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which is comprised of four heavy metals measured in the

top soil in a flood plain along the river Meuse, near Stein in

the Netherlands. The data set has a sample of 155 locations

and top soil heavy metal concentrations (ppm), along with

a number of soil and landscape variables. For the case

studies, spatial coordinates and two heavy metals (cad-

mium, copper) content have been considered. For the

applications, we have determined cadmium as the depen-

dent (response) and copper as the independent (predictor)

variable. These metals are a serious human health hazard

MacBride (1994). Table 1 presents summary statistics of

the data used in the case studies.

To provide some standard indices and avoid negative

values, data conditioning is necessary for clustering

applications (Jain and Dubes 1998). In the present study,

scaling was carried out by the local metric (L-metric)

rescaling, in which the minimum and maximum values of

xij for each j are respectively mapped onto zero and one

respectively,

xL
ij ¼

xij �minjðxijÞ
maxjðxijÞ �minjðxijÞ

ð21Þ

3.2 Case study 1: GWR model

The GWR analyses have been carried out by a fixed spatial

kernel with the Gaussian function. Various approaches

have been used for ascertaining an optimal bandwidth. The

following modified Akaike Information Criterion (AIC)

(Fotheringham et al. (2002), which obtains a trade-off

between goodness-of-fit and degrees of freedom, was used

to provide bandwidth:

AICc ¼ 2n loge r̂ð Þ þ n logeð2PÞ þ n
nþ trðSÞ

n� 2� trðSÞ

� �

ð22Þ

where n is the sample size, r̂ is the estimated standard

deviation of the error term, and tr(S) denotes the trace of

the hat matrix S which maps ŷ on to y (i.e., ŷ ¼ Syð Þ)
The GWR model was fitted using R routines. In addi-

tion, the fixed bandwidth value was determined as 1.41

from AIC using the ‘spgwr’ package in R (Bivand et al.

2008). By using the Gaussian spatial function, coefficient

of determination (CoD) has been computed as 0.858.

3.3 Case study 2: SRDFR model

In the second case study, the weight matrix is obtained

from the spatial relationships between the variables. For

this purpose, the spatial variability is modelled by point

semimadogram function. Functional analyses were carried

out based on the distance measures between pivot locations

and other locations.

The weights for different locations depending on the

distance from the pivot location have been calculated by

the SRDF. Using this algorithm, for example, the SRDF

analysis can be conducted for the location no: 1, the other

location weightings with respect to the pivot location (no:

1) can be obtained easily. The last column in Table 2

includes the SRDF weighting which can also be taken from

the graph in Fig. 2. The structure in Fig. 2 explains the

spatial dependence in terms of distance. The closest loca-

tion to the pivot contributes the highest weight, and the

furthest ones relatively contribute the least weights.

Table 1 Summary statistics for variables

Copper Cadmium

Min. 14.0 0.2

Median 31.0 2.1

Mean 40.3 3.2

Max. 128.0 18.1

Table 2 Spatial measure for location no. 1

Location Distance Cadmium PCSM Distance

ratio

SRDF

Weighting

1 0.000 0.642 0.000 0.000 1.000

2 0.022 0.469 0.086 0.017 0.998

3 0.038 0.352 0.231 0.030 0.994

8 0.066 0.145 0.480 0.052 0.987

: :

: :

148 1.272 0.162 37.442 1.000 0.000

Location no: 1

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Distance ratio

S
R

D
F

 W
ei

gh
tin

g

Fig. 2 SRDF graph for station no. 1
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The SRDF values have been used in the least squares

system given in (4) for the geographical weighting

Wðui; viÞ of the observations. In this manner, the SRDFR

method provided an alternative solution by determining the

weights from a spatial function.

3.4 Case study 3: FCMR model

In the FCMR model, the weights of the least squares sys-

tem have been obtained from the SRDF directly. In this

model, first a FCM clustering application has been con-

ducted and then by using the belongingness with maximum

memberships, the members of the clusters have been

determined. Because the local estimations have been car-

ried out by all members of the clusters, the system has not

required any bandwidth value.

The optimal number of clusters was defined experi-

mentally using Xie–Beni index (Xie and Beni 1991) which

is a well-known clustering validity method. For this

application, the appropriate numbers of clusters was

determined as five. The cluster centres are depicted in

Fig. 3.

In the following step, the SRDF values have been cal-

culated for each location using the observations within the

related cluster. The SRDF weights have been employed in

the least squares system and local estimations have been

carried out.

3.5 Case study 4: EFCR model

For this model, the extended fuzzy clustering, application

was implemented. The details of the application procedure

were introduced in Tutmez (2009, 2011). The optimal

number of clusters was determined experimentally using a

similarity-based cluster merging approach and an adaptive

threshold. The threshold a 2 ½0; 1� deals with some char-

acteristics such as cluster size and the clustering parame-

ters, like the fuzziness m. The fuzziness parameter m is

selected as 1.6. As a result of the application, the appro-

priate numbers of clusters was found as five. These centres

are indicated in Fig. 4. Note that there is a difference

between the positions of the cluster centers of FCMR and

EFCR model that has been reasoned from the preferred

cluster validity index.

By the clustering application, the fuzzy cluster covari-

ance matrix and volume prototypes have been computed to

determine the bandwidth (radius) values. In addition, by

using the information obtained from the clustering,

Gaussian type membership functions have been estab-

lished. The function values (membership values) have been

employed in the least square systems as the weights. Fig-

ure 5 shows the input memberships considered in the

model.

In the model, the bandwidths of the Gaussian functions

have had different values for each cluster as [0.066; 0.086;

0.122; 0.097; 0.085]. In addition, the CoD has been

determined as 0.858.

3.6 Case study 5: EFCRDR model

The EFCRDR model enabled to make a connection

between fuzzy clustering and spatial data. The EFCRDR

model first described the structure of the system by

extended fuzzy clustering and then established a weightedFig. 3 Meuse data and cluster centers for FCMR model

Fig. 4 Meuse data and cluster centers for EFCR model
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regression model via the SRDF values. By using the same

parameters given in case study 4, the appropriate numbers

of clusters was determined as five. As stated before, the

main difference of the EFCRDR model from the EFCR

model is determination of the local regression weights.

In the EFCRDR model, the SRDF values of the obser-

vations have served as the weights expressing the relevance

of the location that local model. To obtain these weights

some spatial measures have been done. Figure 6a gives a

measure that has been performed for a sample location (no:

70). By using the information taken from the spatial

measure, the following steps were taken and the SRDF

graph produced is given in Fig. 6b.

– Maximum PCSM value ðcmÞ has been determined.

– All the PCSM values is divided by ðcmÞ. In this manner,

the result was a scaled form of the sample PCSM

values within limits of zero and one.

– Finally, the dimensionless PCSM values are subtracted

from one at each distance.

4 Results and discussions

To evaluate the performance of the local models provided

by the case studies, we have plotted the estimated cadmium

concentrations against the measured (actual) concentra-

tions. Figure 7 illustrates the results of the models together

with the cross-correlations between estimated and mea-

sured values. The large determination coefficient (r2)

shows that the model has good estimation capability. In

addition, the model performances have been indicated by

three additional effective indices which are variance

account for (VAF), root mean square error (RMSE) and

standard deviation (Std) as in Table 3.

As seen in Fig. 7, the EFCRDR model performed best.

In addition to the accuracy, the EFCRDR model has not
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Fig. 5 Input membership functions for EFCR model
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produced any outlier values. On the other hand, the

EFCRDR model yields some over estimations. This finding

clearly indicates an ensemble of the local models, one of

which is consistently biased and others provide mis-spec-

ified slope parameters but otherwise surprisingly good

linear fit. This could be resourced from the identification of

the SRDF. Figure 8 presents the estimation errors for both

the EFCR and the EFCRDR model. Based on the error

variability indicated in Fig. 8, the over estimation can be

said to be a disadvantage of the EFCRDR model. This issue
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Fig. 7 Scatter plots for the

models a GWR model,

b SRDFR model, c FCMR

model, d EFCR model and

e EFCRDR model

Table 3 Performance measures of models

Models VAF RMSE Std

Measured – – 0.197

GWR 85.67 0.074 0.181

SRDFR 85.66 0.074 0.178

FCMR 89.29 0.065 0.183

EFCR 90.45 0.062 0.187

EFCRDR 93.22 0.077 0.209
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also can be seen with relatively high RMSE and Std values

as presented in Table 3.

Note that the data set has a sample of 155 locations and

is limited in number. The difference between the perfor-

mances of the models could be easily observed by some

extended data sets. Another important point is that the

fuzzy clustering based models have used only five clusters

for the interpolations. The number of clusters can be

increased depending on an upper estimate in the fuzzy

clustering based algorithms. However, in practice, there

can be a reverse relationship between the accuracy and

generality of the models. This point should be considered

in structure identification.

In addition to analysis of relationships between the

variables, spatially varying coefficients are also important

for geographically referenced data analysis. In the present

study, instead of the coefficient based GWR analysis, the

structure has been handled as a prediction model. However,

Griffith (2008) showed that maps of the GWR coefficients

tend to exhibit multicollinearity as well as strong positive

autocorrelation.

5 Conclusions

In the presented study, a comparative experimental study

has been presented to discuss the spatially varying rela-

tionships. For this purpose, five local regression models

were developed and the performances of the models have

been compared by using a geographically referenced data

set.

The experimental studies showed that models based on

the extended fuzzy clustering provide the best estimations.

In particular, the hybrid model developed by combining

extended fuzzy clustering and regional dependence based

regression model (EFCRDR) outperforms the other

regression models. The EFCRDR model firstly divided the

area in different subareas (clusters) and then analysed the

relationships by some regional dependence functions. In

addition to the EFCRDR model, the EFCR model which is

a combination of extended fuzzy clustering and conven-

tional LSE, has produced some successful results such as

lower error and better variation on predicted values.

In contrast to existing estimation strategies, the hybrid

models presented in this paper integrate soft computing and

geostatistics and this view covers a potential to enhance the

robustness and generalisability of the models for appraising

real-world spatial environmental problems efficiently and

intuitively. As a consequence, it can be expressed that

combining soft computing and spatial statistics provides a

novel methodological perspective for local spatial data

analysis.
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