40 research outputs found

    Revisiting ameloblastin; addressing the EMT-ECM axis above and beyond oral biology

    Get PDF
    Ameloblastin (AMBN) is best characterized for its role in dental enamel formation, regulating cell differentiation and mineralization, and cell matrix adhesion. However, AMBN has also been detected in mesenchymal stem cells in addition to bone, blood, and adipose tissue. Using immunofluorescence in a pilot scheme, we identified that AMBN is expressed in different parts of the gastrointestinal (GI) tract. AMBN mRNA and protein detection in several tissues along the length of the GI tract suggests a role for AMBN in the structure and tissue integrity of the extracellular matrix (ECM). Intracellular AMBN expression in subsets of cells indicates a potential alternative role in signaling processes. Of note, our previous functional AMBN promoter analyses had shown that it contains epithelial–mesenchymal transition (EMT) regulatory elements. ΑΜΒΝ is herein presented as a paradigm shift of the possible associations and the spatiotemporal regulation of the ECM regulating the EMT and vice versa, using the example of AMBN expression beyond oral biology

    Validation of the Surgical Outcome Risk Tool (SORT) and SORT v2 for Predicting Postoperative Mortality in Patients with Pancreatic Cancer Undergoing Surgery

    Get PDF
    BACKGROUND: Pancreatic cancer surgery is related to significant mortality, thus necessitating the accurate assessment of perioperative risk to enhance treatment decision making. A Surgical Outcome Risk Tool (SORT) and SORT v2 have been developed to provide enhanced risk stratification. Our aim was to validate the accuracy of SORT and SORT v2 in pancreatic cancer surgery. METHOD: Two hundred and twelve patients were included and underwent pancreatic surgery for cancer. The surgeries were performed by a single surgical team in a single tertiary hospital (2016-2022). We assessed a total of four risk models: SORT, SORT v2, POSSUM (Physiology and Operative Severity Score for the enumeration of Mortality and Morbidity), and P-POSSUM (Portsmouth-POSSUM). The accuracy of the model was evaluated using an observed-to-expected (O:E) ratio and the area under the curve (AUC). RESULTS: The 30-day mortality rate was 3.3% (7 patients). Both SORT and SORT v2 demonstrated excellent discrimination traits (AUC: 0.98 and AUC: 0.98, respectively) and provided the best-performing calibration in the total analysis. However, both tools underestimated the 30-day mortality. Furthermore, both reported a high level of calibration and discrimination in the subgroup of patients undergoing pancreaticoduodenectomy, with previous ERCP, and CA19-9 ≥ 500 U/mL. CONCLUSIONS: SORT and SORT v2 are efficient risk-assessment tools that should be adopted in the perioperative pathway, shared decision-making (SDM) process, and counseling of patients with pancreatic cancer undergoing surgery

    Redefining biomaterial biocompatibility: challenges for artificial intelligence and text mining

    Get PDF
    The surge in ‘Big data’ has significantly influenced biomaterials research and development, with vast data volumes emerging from clinical trials, scientific literature, electronic health records, and other sources. Biocompatibility is essential in developing safe medical devices and biomaterials to perform as intended without provoking adverse reactions. Therefore, establishing an artificial intelligence (AI)-driven biocompatibility definition has become decisive for automating data extraction and profiling safety effectiveness. This definition should both reflect the attributes related to biocompatibility and be compatible with computational data-mining methods. Here, we discuss the need for a comprehensive and contemporary definition of biocompatibility and the challenges in developing one. We also identify the key elements that comprise biocompatibility, and propose an integrated biocompatibility definition that enables data-mining approaches.Peer ReviewedPostprint (published version

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Nanomaterials Upscaling Cell Production and Advancing Exosome-Based Stem Cell Therapies

    No full text
    The COVID-19 pandemic underlined that by investing in both basic and clinical life science research and if there are enough volunteers, it is feasible to have -validated by Phase III clinical trials- vaccines in less than a year. Regarding the treatment options for the people who were infected by COVID-19, we know that it was the large clinical trials - like SOLIDARITY (WHO) and RECOVERY (UK)- that gave the most valid results, and that although hundreds of drugs were repurposed, sadly, most proved to be unsuccessful. Repurposing drugs and compassionate use, were the only options for the first half of 2020. The same applied to the convalescent plasma (CP) approach; however, apart from CP, other cell derived therapeutics were deployed, such as synthetic monoclonal antibodies, which were also tested and given provisional licences by health authorities. Unfortunately, synthetic antibody production comes with problems related to low and slow yield that were not overcome, while SARS-CoV-2 viral mutations may possibly render them less effective. One approach that works and is currently assessed in several clinical trials, is mesenchymal stromal cell (MSCs) and extracellular vesicle (EV) administration for therapy. Interdisciplinarity may prove key here. Easy to produce nanomaterials and biomaterials should be further investigated to increase bioproduction of MSCs, both at the level of therapeutics, as the base substrate for EV production and to upscale synthetic antibody production for therapy

    Nanomaterials Upscaling Cell Production and Advancing Exosome-Based Stem Cell Therapies

    Get PDF
    The COVID-19 pandemic underlined that by investing in both basic and clinical life science research and if there are enough volunteers, it is feasible to have -validated by Phase III clinical trials- vaccines in less than a year. Regarding the treatment options for the people who were infected by COVID-19, we know that it was the large clinical trials - like SOLIDARITY (WHO) and RECOVERY (UK)- that gave the most valid results, and that although hundreds of drugs were repurposed, sadly, most proved to be unsuccessful. Repurposing drugs and compassionate use, were the only options for the first half of 2020. The same applied to the convalescent plasma (CP) approach; however, apart from CP, other cell derived therapeutics were deployed, such as synthetic monoclonal antibodies, which were also tested and given provisional licences by health authorities. Unfortunately, synthetic antibody production comes with problems related to low and slow yield that were not overcome, while SARS-CoV-2 viral mutations may possibly render them less effective. One approach that works and is currently assessed in several clinical trials, is mesenchymal stromal cell (MSCs) and extracellular vesicle (EV) administration for therapy. Interdisciplinarity may prove key here. Easy to produce nanomaterials and biomaterials should be further investigated to increase bioproduction of MSCs, both at the level of therapeutics, as the base substrate for EV production and to upscale synthetic antibody production for therapy.publishedVersio

    The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp.

    No full text
    On the quest of discovering novel local strains of microalgal species that can be effectively cultured with industrial perspectives, two cyanobacterial strains Anabaena sp. and Cyanothece sp. were isolated from the lagoonal and saltworks waters of the Messolonghi lagoon (W. Greece). They were batch cultured at 20–21.5 °C in six combinations of three salinities (20, 40 and 60 ppt) and two light intensities (2000 and 8000 lux) resulting in: (a) Anabaena grew best at 20 and 40 ppt at high light of 8000 lux. (b) Cyanothece grew best at 40 and 60 ppt at high light. (c) Low light of 2000 lux resulted in much reduced growth in all treatments. (d) Maximal biomass yield was 1.27 and 1.77 g d.w./L for Anabaena and Cyanothece, respectively. Overall, both species have culture potential yielding biomass comparable to the average (or above) relevant values reported in the literature for various cultured cyanobacteria

    Protocol to dissect and dissociate the mouse brainstem for single-cell RNA-seq applications

    No full text
    Summary: Processing dissociated cells for transcriptomics is challenging when targeting small brain structures, like brainstem nuclei, where cell yield may be low. Here, we present a protocol for dissecting, dissociating, and cryopreserving mouse brainstem that allows asynchronous sample collection and downstream processing of cells obtained from brainstem tissue in neonatal mice. Although we demonstrate this protocol with the isolated preBötzinger complex and downstream SmartSeq3 cDNA library preparation, it could be readily adapted for other brainstem areas and library preparation approaches. : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    Personalized Prehabilitation Improves Tolerance to Chemotherapy in Patients with Oesophageal Cancer

    No full text
    Background: Prehabilitation programmes aim to optimise patients before and after cancer treatment including surgery. Previous studies in surgical patients demonstrate that prehabilitation improves pre-operative fitness and overcomes the negative impact of neoadjuvant chemotherapy on fitness. The aim of this study was to assess the impact of prehabilitation on the tolerance of neoadjuvant chemotherapy in patients with oesophageal cancer. Methods: Patients with oesophageal or gastroesophageal junction (GOJ) cancer from two oncology centres were retrospectively included in the present comparative cohort study; one provided a multimodal prehabilitation programme and one did not offer any prehabilitation. Tolerance of chemotherapy, defined as completion of the full chemotherapy regime as per protocol, was compared between the two groups. Results: In terms of participants, 92 patients were included in this study, 47 patients in the prehabilitation cohort and 45 in the control cohort. Compared with the control group, the prehabilitation group demonstrated an improved rate of chemotherapy completion (p = 0.029). In multivariate analysis, participation in prehabilitation was significantly associated with an improved rate of chemotherapy completion. Conclusion: The findings of this exploratory study suggest that prehabilitation is associated with better tolerance for chemotherapy. Further research is needed to establish the long-term impact of prehabilitation on oncological outcomes
    corecore