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Ameloblastin (AMBN) is best characterized for its role in dental enamel formation,
regulating cell differentiation and mineralization, and cell matrix adhesion. However,
AMBN has also been detected in mesenchymal stem cells in addition to bone, blood,
and adipose tissue. Using immunofluorescence in a pilot scheme, we identified that
AMBN is expressed in different parts of the gastrointestinal (GI) tract. AMBNmRNAand
protein detection in several tissues along the length of the GI tract suggests a role for
AMBN in the structure and tissue integrity of the extracellular matrix (ECM).
Intracellular AMBN expression in subsets of cells indicates a potential alternative
role in signaling processes. Of note, our previous functional AMBN promoter analyses
had shown that it contains epithelial–mesenchymal transition (EMT) regulatory
elements. AMBN is herein presented as a paradigm shift of the possible
associations and the spatiotemporal regulation of the ECM regulating the EMT
and vice versa, using the example of AMBN expression beyond oral biology.
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Introduction

AMBN beyond oral biology

Ameloblastin (AMBN) is a pleiotropic protein (Spoutil et al., 2023) previously assumed
to be specifically expressed by ameloblasts and responsible for extracellular crystal formation
of enamel during tooth development (Lacruz et al., 2017; Liang et al., 2019). While AMBN-
related research has primarily focused on dental tissues, potential AMBN functions in non-
oral tissues and organs have been suggested (Tamburstuen et al., 2011; Stakkestad et al., 2018;
Kegulian et al., 2023). During embryonic development, it can be present in salivary glands
(Sharifi et al., 2021) and also in adult adipose tissue (Stakkestad et al., 2018). Detection in the
bone-forming cells (osteoblasts), influencing osteoblast activity and mineralization
(Tamburstuen et al., 2011; Lu et al., 2016; Stakkestad et al., 2017; Spoutil et al., 2023),
indicates the role of AMBN in bone development and repair.

Characterization of AMBN-KO mouse models demonstrated that skeletal–muscular
function and red blood cell differentiation were affected (Liang et al., 2019) and identified
differential expression of AMBN in cardiac cells during embryonic heart development
(Masino et al., 2004; Masino et al., 2005). Furthermore, AMBN was detected by
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transcriptomics and in situmRNA hybridization in a subpopulation
of basal cells (Andrew et al., 2023) on zebrafish skin, and the cells
previously mentioned have a secretory morphology in contact with
the calcified scale matrix (Sire et al., 1997). Information provided by
commercial producers (Santa Cruz Inc, 2023) of antibodies against
AMBN also refers to immunodetection in various tissues, such as
cytoplasmic staining of cells in glomeruli. However, the precise
AMBN function in these organs or in the tissue development and
physiology is not yet fully understood.

Is there a link between tissue structure
and AMBN expression?

The intestinal ECM acts as a barrier to the external environment,
providing protection and mechanical support to cells and elasticity and

resistance to tensile forces on organs (Pompili et al., 2021). The ECM
provides structural support and integrity to the cells lining the GI tract
and as a scaffold holds the cells together and maintains the tissue
structural organization, and it provides an insight to cell–ECM
interactions (Onfroy-Roy et al., 2020). These signaling and physical
cues influence cell behavior, including adhesion, migration, and
differentiation, and ECM-centered studies can reveal how it
regulates various cellular processes and contributes to tissue
homeostasis and repair. Tissue-specific ECM rearrangements create
structures and spaces for unique cellular processes, such as intestinal
villi and crypts containing stem cell regeneration pools (Yue, 2014;
Pennings et al., 2018). Numerous factors regulating ECM composition
and structure are known, but do we know them all and how tissue-
specific they are? Understanding the composition and function of the
ECM in the GI tract helps elucidate the mechanisms that contribute to
tissue stability and integrity.

FIGURE 1
Immunofluorescence imaging of various GI tract tissues. Upper grayscale panels show overview of the tissue in the region where the AMBN signal
was detected. Scale bar 200 μm. Lower panels show detection of AMBN immunostaining shown in ImageJ lookup table “red hot” and tissue
autofluorescence in cyan. Scale bar 20 μm. GI tract overview diagram was created in Biorender.
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AMBN expression in soft tissues of the gastrointestinal tract was
examined by indirect immunofluorescence on a commercial human
tissue array of normal adult formalin-fixed paraffin-embedded
tissues. Tissue cores were imaged first to give an overview of the
tissue sample and then were imaged at a higher magnification to
focus on the AMBN distribution. AMBN was detected in the tonsil,
esophagus, stomach, duodenum, colon, and rectum (Figure 1),
although its expression levels and localization varied (negative
controls without the primary antibody are shown in the
Supplementary Figure S1.).

In the tonsil, many cells expressed a low level of AMBN. There
was no particular localization or grouping of the AMBN-positive
cells across the tonsil tissue core (diameter 1.5 mm) and little
variation in AMBN expression. In contrast, in the esophagus,
AMBN was predominantly expressed in squamous epithelium.
Here, there were clear demarcations between the AMBN-positive
cells in the squamous epithelium and the AMBN-negative cells in
the submucosa, although the expression level within the squamous
epithelium varied. Epithelium AMBN expression was confirmed in
rat gingiva, using a different anti-AMBN antibody (Supplementary
Figure S2).

In the stomach, the expression of AMBN was restricted to
groups of cells within the mucosa, suggesting it may mark
specialized cell subgroups. These groups were among the gastric
pits, although there was no obvious pattern for the number and
distribution of the AMBN-positive cells. In the duodenum, few cells
expressed detectable AMBN, but at a much higher level than that
seen in the other GI tissues (demonstrated by the saturation of the
high-magnification image set of the duodenum in Figure 1, due to
the high level of AMBN expression relative to the other tissues, at
constant imaging conditions). The stomach and duodenum cells had
more punctate AMBN distribution within the cells, suggesting a
vesicular intracellular localization. In the colon, the AMBN
expression was again more diffuse, localizing mainly between
mucosal crypts. In the rectum, low levels of AMBN were present
in both the mucosa and submucosa, with no particular AMBN

expression pattern. Both these tissues demonstrated low levels of
AMBN, where the protein may be cytosolic and/or part of the
extracellular matrix.

To complement and confirm the protein data, a commercially
available human tissue cDNA array was used to determine the
expression profile of AMBN mRNA, in tissues of the oral cavity and
along the GI tract (Figure 2). The PCR confirmed AMBN expression
in the tonsils, esophagus, stomach, and intestine (in red) and further
showed that it is abundantly expressed in the human tongue, nasal
mucosa, salivary glands, larynx, and trachea (as shown in the yellow
bubbles).

AMBN in the GI tract: a paradigm shift?

In this pilot study, we aimed to map the protein expression of
AMBN in healthy adult tissue beyond the oral cavity. Using
immunofluorescence, we identified the AMBN expression in the
GI tract and documented its presence in the tonsils, esophagus,
stomach, and intestines. The expression pattern demonstrated in the
tonsil, esophagus, colon, and rectum is consistent, suggesting a role
for AMBN as a structural component of the ECM, particularly in
regions subjected to mechanical stress, such as shear forces and
stretching (Janssen et al., 2011). The more dispersed nature of the
AMBN-positive cells in the stomach and duodenum and contrasting
intracellular localization could however suggest alternative
proteolytic products and/or alternative function(s) (Iwata et al.,
2007; Vetyskova et al., 2020).

AMBN expression has been previously documented
(Tamburstuen et al., 2011) to be high in CD34+ mesenchymal
stem cells (MSCs), which are a major component of the
intestinal stem cells niche (Stzepourginski et al., 2017). Of note,
RNA-seq analysis has documented the AMBN expression in the
human intestine (Protein Atlas, 2023) but not in a murine model of
intestinal epithelium organoids (Ohsaka and Sonoyama, 2018).
Thus, the high protein expression of AMBN within specific cell

FIGURE 2
qRT-PCR analysis of various oral and GI tract tissues: a commercial cDNA array containing human tissue samples from the oral and gastrointestinal
(GI) tract tissue was employed as the basis for a quantitative real-time polymerase chain reaction (qRT-PCR) analysis to assess the mRNA levels of AMBN
across a spectrum of tissues within these anatomical regions. In the graphical representation of the data, bubbles indicate the calculated 2̂-(ΔΔCT) values,
normalized to the expression of the housekeeping geneGAPDH. The PCR confirmed AMBN expression in tonsils, esophagus, stomach, and intestine
(in red) and further showed that it is abundantly expressed in the human tongue, nasal mucosa, salivary glands, larynx, and trachea (as shown in the yellow
bubbles).
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subpopulation of cells in the stomach and duodenum could suggest
specific spatiotemporal roles and alternative functions related to the
gastric stem cell niche. We thus suggest that charting AMBN as an
integral component of the ECM is crucial to understand the role of
the extracellular matrix (ECM) in specific cell clusters and GI tract
lining. This may be crucial for the deconvolution of the partners of
tissue structure and integrity.

AMBN and the epithelial–mesenchymal
transition (EMT)

AMBN has previously been linked to critical signaling roles in the
initiation of cell polarity (Visakan et al., 2022) and in cell-to-cell and
cell-to-matrix interactions (Su et al., 2020). The signals from the ECM
are known to be key regulators of epithelial–mesenchymal transition
(EMT) both in physiology and disease (Scott et al., 2019) and may vary
from gene expression modifications to epigenetic reprogramming cues
(Peixoto et al., 2019). EMT is a tiered process where epithelial cells
partially lose their epithelial characteristics, such as polarity and
adhesiveness, and acquire MSC properties (Kalluri and Weinberg,
2009; Xiang et al., 2022). It is key among the processes taking place
in cells of ectodermal and epithelial origins that shape the tooth
structures and contribute to the cells involved in developing teeth,
connect them to the bone, and help them remain embedded in the jaw
(Hermans et al., 2021). EMT is suggested to be a sequential process,
where the cell goes through an intermediate state, termed partial (p)-
EMT; at that state, the cells have both E and M traits (hybrid E/M) and
high degree of plasticity (Kalluri andWeinberg, 2009; Aiello et al., 2018)
(Figure 3).

Of note, we know that of the chain of reciprocal
epithelial–mesenchymal interactions regulating tooth
morphogenesis and tooth-specific cell differentiation, including
odontoblasts, ameloblasts, and cementoblasts, the role of AMBN
in EMT and pEMT is not delimited.

AMBN promoter: old insights and new
routes

Wehad previously investigated the AMBNpromoter and identified
regulatory elements associatedwith the EMT (Tamburstuen et al., 2011)
(Figure 3). Among them were potential binding sites for transcription
factors associated with intestinal MSC regulation, such as MYB
(Cheasley et al., 2011; Cicirò and Sala, 2021), identified in addition
to the intestine ectopic crypt and cell differentiation markers MSX1
(Horazna et al., 2019) and CDX1. The latter is also expressed in
intestinal epithelium MSCs and in the crypts and base of villi of the
differentiating cells replacing the senescent cells with digestive activity
(Frumkin et al., 1994). Strikingly, among the putative promoter
elements, we mapped transcription factors associated with EMT in
physiology and oncogenesis, such as RFX1 (Isaac et al., 2021), BCL6
(Yang et al., 2020), GLI1 (Lei et al., 2022), and OCT1 (Li et al., 2015).
Another AMBN promoter analysis (Smith et al., 2020) identified SP6,
later suggested to be among the genes implicated in gastric cancer
(Zhou et al., 2021) together with MEF2, which resulted from our own
AMBN promoter analysis. Our own recent data have associated AMBN
expression levels with testicular (Geng et al., 2022) and ovarian cancer
(Geng et al., 2023). Thus, the ECM–EMT AMBN association and the
GI tract localization data shed a different light on the old promoter data,
and the role of these regulatory elements shall be unveiled in future
studies.

New AMBN perspectives

It is known that during mineralization of enamel, AMBN is
processed into smaller fragments, adding to the puzzle of the
spatiotemporal and distinct roles of AMBN isoforms
(Ravindranath et al., 2007; Wazen et al., 2009; Smith et al.,
2009; Stakkestad et al., 2018). Thus, the different localization
patterns we see in the GI tract may also reflect different

FIGURE 3
Upper panel: cellular changes during epithelial-to-mesenchymal transition (EMT). Lower panel: putative transcription factors (TFs) and/or promoter
elements related to GI tract (left) and EMT (in purple font) AMBN transcription regulation.
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proteolytic products from the full-length AMBN protein, which
are still recognized by the same antibody. As the distribution and
expression level of AMBN differed greatly between the tissues, this
could again suggest that AMBNmay play more than one role in the
GI tract. Understanding the role of AMBN in the ECM of the cells
lining the GI tract is crucial for comprehending tissue structure,
cell behavior, barrier function, and disease pathogenesis.

The EMT is associated both with the development of normal
intestinal tissues and human inflammatory bowel disease (Brabletz
et al., 2009; Flier et al., 2010; Jiang et al., 2018; Lovisa et al., 2019).
Of note, the epithelial cells lining the GI tract are responsible for
the formation of the protective barrier separating the internal
environment from the external environment, responsible for food
passage (Okumura and Takeda, 2017). The role of the ECM is
instrumental in maintaining the integrity of this barrier. Thus, to
identify and understand the interactions of AMBN as an ECM
component of lining cells in physiology would shed light into the
mechanisms of barrier function.

Concluding remarks

Lamppost findings are often used to map step-by-step research
routes, indicating prior discoveries and guided by cost-
effectiveness. However, in the context of the gastrointestinal
(GI) tract ECM, a noteworthy paradigm shift emerges with the
introduction of AMBN, beyond the traditional routes. This
protein, conventionally recognized as a tooth ECM-associated
partner, warrants a fresh perspective.

In this age of extensive data and innovative single-cell
methodologies, we have the opportunity to explore uncharted
pathways. The preliminary results discussed here provide
insights into the structural components governing GI tract
physiology. Furthermore, they showcase possible associations
of the spatiotemporal regulation of the ECM regulating the
EMT and vice versa, using the example of AMBN beyond oral
biology. We present AMBN as an example of how the body
spatiotemporally recycles genes to uphold tissue reconstruction
and homeostasis. Undoubtedly, future studies on the expression
and role of AMBN in pathophysiological phenomena could lead
to advancements in diagnostics, therapeutics, and regenerative
medicine.

Herein, we aimed to broaden the EMT field with a systems
biology perspective and suggest that the EMT–ECM axis needs to be
addressed as a composite entity in both developmental biology and
regenerative medicine.
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SUPPLEMENTARY FIGURE S1

Negative control images for immunofluorescence labeling of normal human
adult tissue array. Negative control samples were treated as for test samples,
except that the primary antibody was omitted. Scale bar 20 μm.
Autofluorescence and immunolabelling images are both shown in grayscale.

SUPPLEMENTARY FIGURE S2

Rat gingiva formalin-fixed paraffin-embedded sections stained by indirect
autofluorescence with anti-AMBN (DF8503, 1:200, Affinity Biosciences) and
goat anti-rabbit Alexa Fluor 488 (A–C) or negative control where the
primary antibody was omitted (D–F). Panels show tissue autofluorescence
(A, D), Alexa Fluor 488 signal (B, E), or merged images (C, F). Merged images
show autofluorescence in cyan and Alexa Fluor 488 signal in ImageJ
lookup table “red hot”. Scale bar 20 μm.
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