331 research outputs found

    Aplicações do método de Rietveld em mineralogia

    Get PDF

    Informatização do Laboratório de Difratometria de Raios X do Instituto de Geociências da USP

    Get PDF

    Clarification of status of species in the pyrochlore supergroup

    Get PDF
    After careful consideration of the semantics of status categories for mineral species names, minor corrections and disambiguations are presented for a recent report on the nomenclature of the pyrochlore supergroup. The names betafite, elsmoreite, microlite, pyrochlore and roméite are allocated as group names within the pyrochlore supergroup. The status of the names bindheimite, bismutostibiconite, jixianite, monimolite, partzite, stetefeldtite and stibiconite is changed from 'discredited' to 'questionable' pending further research

    Informatização do museu de geociências

    Get PDF

    Sulfur-bearing monazite-(Ce) from the Eureka carbonatite, Namibia: oxidation state, substitution mechanism, and formation conditions

    Get PDF
    Sulfur-bearing monazite-(Ce) occurs in silicified carbonatite at Eureka, Namibia, forming rims up to ~0.5 mm thick on earlier-formed monazite-(Ce) megacrysts. We present X-ray photoelectron spectroscopy data demonstrating that sulfur is accommodated predominantly in monazite-(Ce) as sulfate, via a clino-anhydrite-type coupled substitution mechanism. Minor sulfide and sulfite peaks in the X-ray photoelectron spectra, however, also indicate that more complex substitution mechanisms incorporating S2– and S4+ are possible. Incorporation of S6+ through clino-anhydrite-type substitution results in an excess of M2+ cations, which previous workers have suggested is accommodated by auxiliary substitution of OH– for O2–. However, Raman data show no indication of OH–, and instead we suggest charge imbalance is accommodated through F– substituting for O2–. The accommodation of S in the monazite-(Ce) results in considerable structural distortion that may account for relatively high contents of ions with radii beyond those normally found in monazite-(Ce), such as the heavy rare earth elements, Mo, Zr and V. In contrast to S-bearing monazite-(Ce) in other carbonatites, S-bearing monazite-(Ce) at Eureka formed via a dissolution–precipitation mechanism during prolonged weathering, with S derived from an aeolian source. While large S-bearing monazite-(Ce) grains are likely to be rare in the geological record, formation of secondary S-bearing monazite-(Ce) in these conditions may be a feasible mineral for dating palaeo-weathering horizons

    Melcherite, trigonal Ba2Na2Mg[Nb6O19]·6H2O, the second natural hexaniobate, from Cajati, São Paulo, Brazil: Description and crystal structure

    Get PDF
    0000-0002-6395-8895© Mineralogical Society of Great Britain and Ireland 2018. This document is the author’s final accepted version of the journal article. You are advised to consult the published version if you wish to cite from it

    Weeksita rica em bário de perus, municipio de São Paulo

    Get PDF

    Development of the (d,n) proton-transfer reaction in inverse kinematics for structure studies

    Get PDF
    Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.Comment: 9 pages, 4 figures, presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Polan

    Desempeño reproductivo del bocachico Prochilodus magdalenae inducido dos veces en un mismo año

    Get PDF
    RESUMEN Objetivo. Evaluar el desempeño reproductivo del bocachico (Prochilodus magdalenae) sometido a dos inducciones hormonales con extracto pituitario de carpa (EPC) en un mismo año. Materiales y métodos. 23 hembras, en fase de maduración final, fueron inducidas con 5mg EPC/Kg de peso vivo, en dos aplicaciones, inicialmente 10% y doce horas después 90% restante. A los machos fue aplicado 80% de la dosis total de las hembras. Resultados. Después de la primera inducción hormonal, las hembras estuvieron aptas nuevamente a los 97.6±12.4 días. El índice de ovulación en ambas inducciones fue de 0.91 (21/23). La fecundidad absoluta (g-ovocitos/hembra) no presentó diferencias significativa entre la primera y segunda inducción (36.2 y 44.6 g-ovocitos/hembra, respectivamente) (p>0.05); pero cuando se expresó en número de ovocitos/hembra se observó diferencia significativa (p<0.05), siendo mayor en la primera inducción (53535 ovocitos/hembra) que en la segunda (40658 ovocitos/hembra). La fecundidad relativa, expresada tanto en g-ovocitos/Kg-hembra como ovocitos/Kg-hembra, mostraron diferencia significativa, siendo mayor en la primera inducción (p<0.05). La tasa de fecundación (73.9±19.6%) y eclosión (56.9±17.9%) fueron mayores en la primera inducción, comparadas con la segunda (55.6±21.1% y 35.6±20.7%, respectivamente) (p<0.05). Conclusiones. Después de una inducción hormonal se requiere de aproximadamente tres meses para que una hembra de bocachico alcance nuevamente la maduración final y esté apta para una nueva inducción hormonal. El índice de ovulación no fue afectado por una segunda inducción en un mismo año, pero la fecundidad absoluta y relativa puede disminuirse entre 24 y 66% y las tasas de fecundación y eclosión entre 23 y 36%
    corecore