1,004 research outputs found

    Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    Get PDF
    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength

    Peripheral refraction validity of the Shin-Nippon SRW5000 autorefractor

    Get PDF
    PURPOSE: To investigate the operation of the Shin-Nippon/Grand Seiko autorefractor and whether higher-order aberrations affect its peripheral refraction measurements. METHODS: Information on instrument design, together with parameters and equations used to obtain refraction, was obtained from a patent. A model eye simulating the operating principles was tested with an optical design program. Effects of induced defocus and astigmatism on the retinal image were used to calibrate the model eye to match the patent equations. Coma and trefoil were added to assess their effects on the image. Peripheral refraction of a physical model eye was measured along four visual field meridians with the Shin-Nippon/Grand Seiko autorefractor SRW-5000 and a Hartmann-Shack aberrometer, and simulated autorefractor peripheral refraction was derived using the Zernike coefficients from the aberrometer. RESULTS: In simulation, the autorefractor's square image was changed in size by defocus, into rectangles or parallelograms by astigmatism, and into irregular shapes by coma and trefoil. In the presence of 1.0 D oblique astigmatism, errors in refraction were proportional to the higher-order aberrations, with up to 0.8 D sphere and 1.5 D cylinder for ±0.6 μm of coma or trefoil coefficients with a 5-mm-diameter pupil. For the physical model eye, refraction with the aberrometer was similar in all visual field meridians, but refraction with the autorefractor changed more quickly along one oblique meridian and less quickly along the other oblique meridian than along the horizontal and vertical meridians. Simulations predicted that higher-order aberrations would affect refraction in oblique meridians, and this was supported by the experimental measurements with the physical model eye. CONCLUSIONS: The autorefractor's peripheral refraction measurements are valid for horizontal and vertical field meridians, but not for oblique field meridians. Similar instruments must be validated before being adopted outside their design scope

    Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy

    Get PDF
    Post-transplant lymphomas or other lymphoproliferative lesions, which were usually associated with Epstein-Barr virus infections, developed in 8, 4, 3, and 2 recipients, respectively, of cadaveric kidney, liver, heart, and heart-lung homografts. Reduction or discontinuance of immunosuppression caused regression of the lesions, often without subsequent rejection of the grafts. Chemotherapy and irradiation were not valuable. The findings may influence policies about treating other kinds of post-transplantation neoplasms

    Bridge to neuroscience workshop: An effective educational tool to introduce principles of neuroscience to Hispanics students

    Get PDF
    Neuroscience as a discipline is rarely covered in educational institutions in Puerto Rico. In an effort to overcome this deficit we developed the Bridge to Neuroscience Workshop (BNW), a full-day hands-on workshop in neuroscience education. BNW was conceived as an auxiliary component of a parent recruitment program called Bridge to the PhD in Neuroscience Program (BPNP). The objectives of BNW are to identify promising students for BPNP, and to increase awareness of neuroscience as a discipline and a career option. BNW introduces basic concepts in neuroscience using a variety of educational techniques, including mini-lectures, interactive discussions, case studies, experimentation, and a sheep brain dissection. Since its inception in 2011 BNW has undergone a series of transformations that continue to improve upon an already successful and influential educational program for underrepresented minorities. As of Fall 2018, we have presented 21 workshops, impacting 200 high school and 424 undergraduate students. BNW has been offered at University of Puerto Rico (UPR)-Arecibo, UPR-Cayey, UPR-Humacao, Pontificia Universidad Católica de Ponce, and Universidad Interamericana de Puerto Rico-Arecibo. A pre-and post evaluation was given to evaluate material comprehension and thus measure effectiveness of our one-day interactive workshop. Our results suggest that both high school and undergraduate students have little prior knowledge of neuroscience, and that participation in BNW improves not only understanding, but also enthusiasm for the discipline. Currently, our assessment has only been able to evaluate short-term effects (e.g. comprehension and learning). Therefore, our current focus is developing methods capable of determining how participation in BNW impacts future academic and career decisions

    Fission studies with 140 MeV α\bm{\alpha}-Particles

    Full text link
    Binary fission induced by 140 MeV α\alpha-particles has been measured for nat^{\rm nat}Ag, 139^{139}La, 165^{165}Ho and 197^{197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z2/A=24Z^2/A=24 is observed.Comment: 4 figures, 2 table

    Ultracold-neutron infrastructure for the gravitational spectrometer GRANIT

    Full text link
    The gravitational spectrometer GRANIT will be set up at the Institut Laue Langevin. It will profit from the high ultracold neutron density produced by a dedicated source. A monochromator made of crystals from graphite intercalated with potassium will provide a neutron beam with 0.89 nm incident on the source. The source employs superthermal conversion of cold neutrons in superfluid helium, in a vessel made from BeO ceramics with Be windows. A special extraction technique has been tested which feeds the spectrometer only with neutrons with a vertical velocity component v < 20 cm/s, thus keeping the density in the source high. This new source is expected to provide a density of up to 800 1/cm3 for the spectrometer.Comment: accepted for publication in Proceedings International Workshop on Particle Physics with Slow Neutron

    Cross-sections for nuclide production in 56Fe target irradiated by 300, 500,750, 1000, 1500, and 2600 MeV protons compared with data on hydrogen target irradiation by 300, 500, 750, 1000, and 1500 MeV/nucleon 56Fe ions

    Full text link
    Cross-sections for radioactive nuclide production in 56Fe(p,x) reactions at 300, 500, 750, 1000, 1500, and 2600 MeV were measured using the ITEP U-10 proton accelerator. In total, 221 independent and cumulative yields of products of half-lives from 6.6 min to 312 days have been obtained via the direct-spectrometry method. The measured data have been compared with the experimental data obtained elsewhere by the direct and inverse kinematics methods and with calculations by 15 codes, namely: MCNPX (INCL, CEM2k, BERTINI, ISABEL), LAHET (BERTINI, ISABEL), CEM03 (.01, .G1, .S1), LAQGSM03 (.01, .G1, >.S1), CASCADE-2004, LAHETO, and BRIEFF. Most of our data are in a good agreement with the inverse kinematics results and disprove the results of some earlier activation measurements that were quite different from the inverse kinematics measurements. The most significant calculation-to-experiment differences are observed in the yields of the A<30 light nuclei, indicating that further improvements in nuclear reaction models are needed, and pointing out as well to a necessity of more complete measurements of such reactions.Comment: 53 pages, 9 figures, 6 tables, only pdf file, submitted to Phys. Rev.

    CEM03 and LAQGSM03 - new modeling tools for nuclear applications

    Full text link
    An improved version of the Cascade-Exciton Model (CEM) of nuclear reactions realized in the code CEM2k and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) have been developed recently at LANL to describe reactions induced by particles and nuclei for a number of applications. Our CEM2k and LAQGSM merged with the GEM2 evaporation/fission code by Furihata have predictive powers comparable to other modern codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event generators in transport codes for applications. During the last year, we have made a significant improvements to the intranuclear cascade parts of CEM2k and LAQGSM, and have extended LAQGSM to describe photonuclear reactions at energies to 10 GeV and higher. We have produced in this way improved versions of our codes, CEM03.01 and LAQGSM03.01. We present a brief description of our codes and show illustrative results obtained with CEM03.01 and LAQGSM03.01 for different reactions compared with predictions by other models, as well as examples of using our codes as modeling tools for nuclear applications.Comment: 12 pages, 10 figures, to be published in Journal of Physics: Conference Series: Proc. Europhysics Conf. on New Trends in Nuclear Physics Applications and Technologies (NPDC19), Pavia, Italy, September 5-9, 200
    corecore