28 research outputs found
Elevations in plasma glucagon are associated with reduced insulin clearance after ingestion of a mixed-macronutrient meal in people with and without type 2 diabetes
\ua9 The Author(s) 2024.Aims/hypothesis: The temporal suppression of insulin clearance after glucose ingestion is a key determinant of glucose tolerance for people without type 2 diabetes. Whether similar adaptations are observed after the ingestion of a mixed-macronutrient meal is unclear. Methods: In a secondary analysis of data derived from two randomised, controlled trials, we studied the temporal responses of insulin clearance after the ingestion of a standardised breakfast meal consisting of cereal and milk in lean normoglycaemic individuals (n=12; Lean-NGT), normoglycaemic individuals with central obesity (n=11; Obese-NGT) and in people with type 2 diabetes (n=19). Pre-hepatic insulin secretion rates were determined by the deconvolution of C-peptide, and insulin clearance was calculated using a single-pool model. Insulin sensitivity was measured by an oral minimal model. Results: There were divergent time course changes in insulin clearance between groups. In the Lean-NGT group, there was an immediate post-meal increase in insulin clearance compared with pre-meal values (p<0.05), whereas insulin clearance remained stable at baseline values in Obese-NGT or declined slightly in the type 2 diabetes group (p<0.05). The mean AUC for insulin clearance during the test was ~40% lower in the Obese-NGT (1.3 \ub1 0.4 l min−1 m−2) and type 2 diabetes (1.4 \ub1 0.7 l min−1 m−2) groups compared with Lean-NGT (1.9 \ub1 0.5 l min−1 m−2; p<0.01), with no difference between the Obese-NGT and type 2 diabetes groups. HOMA-IR and glucagon AUC emerged as predictors of insulin clearance AUC, independent of BMI, age or insulin sensitivity (adjusted R2=0.670). Individuals with increased glucagon AUC had a 40% reduction in insulin clearance AUC (~ −0.75 l min−1 m−2; p<0.001). Conclusions/interpretation: The ingestion of a mixed-macronutrient meal augments differing temporal profiles in insulin clearance among individuals without type 2 diabetes, which is associated with HOMA-IR and the secretion of glucagon. Further research investigating the role of hepatic glucagon signalling in postprandial insulin kinetics is warranted. Trial registration: ISRCTN17563146 and ISRCTN95281775 Graphical Abstract: (Figure presented.
Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
BACKGROUND & AIMS: Excess liver iron content is common and is linked to hepatic and extrahepatic disease risk. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. METHODS: First, we performed a genome-wide association study (GWAS) in 8,289 individuals in UK Biobank with MRI quantified liver iron, and validated our findings in an independent cohort (n=1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 29 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 anthropometric traits and diseases. RESULTS: We identified three independent genetic variants (rs1800562 (C282Y) and rs1799945 (H63D) in HFE and rs855791 (V736A) in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p < 5x10-8). The two HFE variants account for ∼85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. CONCLUSION: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases. LAY SUMMARY: Excess liver iron content is common and is associated with liver diseases and metabolic diseases including diabetes, high blood pressure, and heart disease. We find that three genetic variants are linked to increased risk of developing higher liver iron content. We show that the same genetic variants are linked to higher risk of many diseases, but they may also be associated with some health advantages. Finally, we use genetic variants associated with waist-to-hip ratio as a tool to show that central obesity is causally associated with increased liver iron content
A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes
Obesity and type 2 diabetes are causally related, yet there is considerable heterogeneity in the consequences of both conditions and the mechanisms of action are poorly defined. Here we show a genetic-driven approach defining two obesity profiles that convey highly concordant and discordant diabetogenic effects. We annotate and then compare association signals for these profiles across clinical and molecular phenotypic layers. Key differences are identified in a wide range of traits, including cardiovascular mortality, fat distribution, liver metabolism, blood pressure, specific lipid fractions and blood levels of proteins involved in extracellular matrix remodelling. We find marginal differences in abundance of Bacteroidetes and Firmicutes bacteria in the gut. Instrumental analyses reveal prominent causal roles for waist-to-hip ratio, blood pressure and cholesterol content of high-density lipoprotein particles in the development of diabetes in obesity. We prioritize 17 genes from the discordant signature that convey protection against type 2 diabetes in obesity, which may represent logical targets for precision medicine approaches.</p
Genome-Wide and Abdominal MRI-Imaging Data Provides Evidence that a Genetically Determined Favourable Adiposity Phenotype is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease and Hypertension
Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such favorable adiposity alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined MRI data with genome-wide association studies of body fat percentage (%) and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity but a favorable metabolic profile. Consistent with previous studies, individuals carrying more favorable adiposity alleles had higher body fat % and higher BMI but lower risk of type 2 diabetes, heart disease, and hypertension. These individuals also had higher subcutaneous fat but lower liver fat and a lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14, and IRS1, whereas the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified favorable adiposity alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglycerides in metabolically low-risk depots.</p
Genome-Wide and Abdominal MRI-Imaging Data Provides Evidence that a Genetically Determined Favourable Adiposity Phenotype is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease and Hypertension
Recent genetic studies have identified alleles associated with opposite effects on
adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and
test the hypothesis that such “favourable adiposity” alleles are associated with higher
subcutaneous fat and lower ectopic fat. We combined magnetic resonance imaging
(MRI) data with genome-wide association studies (GWAS) of body fat % and
metabolic traits. We report 14 alleles, including 7 newly characterized alleles,
associated with higher adiposity, but a favourable metabolic profile. Consistent with
previous studies, individuals carrying more “favourable adiposity” alleles had higher
body fat % and higher BMI, but lower risk of type 2 diabetes, heart disease and
hypertension. These individuals also had higher subcutaneous fat, but lower liver fat
and lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated
with higher body fat % but lower liver fat and lower risk of type 2 diabetes included
those in PPARG, GRB14 and IRS1, whilst the allele in ANKRD55 was paradoxically
associated with higher visceral fat but lower risk of type 2 diabetes. Most identified
“favourable adiposity” alleles are associated with higher subcutaneous and lower liver
fat, a mechanism consistent with the beneficial effects of storing excess triglyceride in
metabolically low risk depots.Diabetes UK RD Lawrence fellowship, European Research Council, Wellcome Trust and Royal Society grant, European Regional Development Fund, Medical Research Council, German Federal Ministry of Education and Research, German Research Foundation, Innovative Medicines Initiative Joint Undertaking, European Union's
Seventh Framework Programme, Dutch Science Organisation, Scottish Government Health Directorates, Scottish Funding Council and Medical Research Council UK and the Wellcome Trust
Predicting and elucidating the etiology of fatty liver disease : A machine learning modeling and validation study in the IMI DIRECT cohorts
Background Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. Methods and findings We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n= 795) or at high risk of developing the disease (n= 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (= 5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86;p = 5%) rather than a continuous one. Conclusions In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see:) and made it available to the community.Peer reviewe
The role of physical activity in metabolic homeostasis before and after the onset of type 2 diabetes: an IMI DIRECT study.
AIMS/HYPOTHESIS: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). METHODS: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. RESULTS: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. CONCLUSIONS/INTERPRETATION: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.S.Bra. was funded by the UK Medical Research Council [MC_UU_12015/3]
Pharmacogenomics of GLP-1 receptor agonists: a genome-wide analysis of observational data and large randomised controlled trials
Background: In the treatment of type 2 diabetes, GLP-1 receptor agonists lower blood glucose concentrations, body weight, and have cardiovascular benefits. The efficacy and side effects of GLP-1 receptor agonists vary between people. Human pharmacogenomic studies of this inter-individual variation can provide both biological insight into drug action and provide biomarkers to inform clinical decision making. We therefore aimed to identify genetic variants associated with glycaemic response to GLP-1 receptor agonist treatment. Methods: In this genome-wide analysis we included adults (aged ≥18 years) with type 2 diabetes treated with GLP-1 receptor agonists with baseline HbA1c of 7% or more (53 mmol/mol) from four prospective observational cohorts (DIRECT, PRIBA, PROMASTER, and GoDARTS) and two randomised clinical trials (HARMONY phase 3 and AWARD). The primary endpoint was HbA1c reduction at 6 months after starting GLP-1 receptor agonists. We evaluated variants in GLP1R, then did a genome-wide association study and gene-based burden tests. Findings: 4571 adults were included in our analysis, of these, 3339 (73%) were White European, 449 (10%) Hispanic, 312 (7%) American Indian or Alaskan Native, and 471 (10%) were other, and around 2140 (47%) of the participants were women. Variation in HbA1c reduction with GLP-1 receptor agonists treatment was associated with rs6923761G→A (Gly168Ser) in the GLP1R (0·08% [95% CI 0·04–0·12] or 0·9 mmol/mol lower reduction in HbA1c per serine, p=6·0 × 10−5) and low frequency variants in ARRB1 (optimal sequence kernel association test p=6·7 × 10−8), largely driven by rs140226575G→A (Thr370Met; 0·25% [SE 0·06] or 2·7 mmol/mol [SE 0·7] greater HbA1c reduction per methionine, p=5·2 × 10−6). A similar effect size for the ARRB1 Thr370Met was seen in Hispanic and American Indian or Alaska Native populations who have a higher frequency of this variant (6–11%) than in White European populations. Combining these two genes identified 4% of the population who had a 30% greater reduction in HbA1c than the 9% of the population with the worse response. Interpretation: This genome-wide pharmacogenomic study of GLP-1 receptor agonists provides novel biological and clinical insights. Clinically, when genotype is routinely available at the point of prescribing, individuals with ARRB1 variants might benefit from earlier initiation of GLP-1 receptor agonists. Funding: Innovative Medicines Initiative and the Wellcome Trus
Causal inference in obesity research
Obesity is a risk factor for a plethora of severe morbidities and premature death. Most supporting evidence comes from observational studies that are prone to chance, bias and confounding. Even data on the protective effects of weight loss from randomized controlled trials will be susceptible to confounding and bias if treatment assignment cannot be masked, which is usually the case with lifestyle and surgical interventions. Thus, whilst obesity is widely considered the major modifiable risk factor for many chronic diseases, its causes and consequences are often difficult to determine. Addressing this is important, as the prevention and treatment of any disease requires that interventions focus on causal risk factors. Disease prediction, although not dependent on knowing the causes, is nevertheless enhanced by such knowledge. Here, we provide an overview of some of the barriers to causal inference in obesity research and discuss analytical approaches, such as Mendelian randomization, that can help to overcome these obstacles. In a systematic review of the literature in this field, we found: (i) probable causal relationships between adiposity and bone health/disease, cancers (colorectal, lung and kidney cancers), cardiometabolic traits (blood pressure, fasting insulin, inflammatory markers and lipids), uric acid concentrations, coronary heart disease and venous thrombosis (in the presence of pulmonary embolism), (ii) possible causal relationships between adiposity and gray matter volume, depression and common mental disorders, oesophageal cancer, macroalbuminuria, end-stage renal disease, diabetic kidney disease, nuclear cataract and gall stone disease, and (iii) no evidence for causal relationships between adiposity and Alzheimer's disease, pancreatic cancer, venous thrombosis (in the absence of pulmonary embolism), liver function and periodontitis
Estimating the Direct Effect between Dietary Macronutrients and Cardiometabolic Disease, Accounting for Mediation by Adiposity and Physical Activity
Assessing the causal effects of individual dietary macronutrients and cardiometabolic disease is challenging owing to the complexity to distinguish direct effects from those mediated or confounded by other factors. To estimate these effects, intake of protein, carbohydrate, sugar, fat, and its subtypes were obtained using food frequency data derived from a Swedish population-based cohort (n~60,000). Data on clinical outcomes (i.e., type 2 diabetes (T2D) and cardiovascular disease (CVD) incidence) were obtained by linking health registry data. We assessed the magnitude of direct and mediated effects of diet, adiposity and physical activity on T2D and CVD using structural equation modelling (SEM). To strengthen causal inference, we used Mendelian randomization (MR) to model macronutrient intake exposures against clinical outcomes. We identified likely causal effects of genetically predicted carbohydrate intake (including sugar intake) and T2D, independent of adiposity and physical activity. Pairwise, serial-and parallel-mediational configurations yielded similar results. In the integrative genomic analyses, the candidate causal variant localized to the established type 2 diabetes gene TCF7L2. These findings may be informative when considering which dietary modifications included in nutritional guidelines are most likely to elicit health-promoting effects