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A phenome-wide comparative analysis of 
genetic discordance between obesity and 
type 2 diabetes

Daniel E. Coral    1 , Juan Fernandez-Tajes1, Neli Tsereteli1, 
Hugo Pomares-Millan    1, Hugo Fitipaldi    1, Pascal M. Mutie1, 
Naeimeh Atabaki-Pasdar    1,2, Sebastian Kalamajski1, Alaitz Poveda1, 
Tyne W. Miller-Fleming3, Xue Zhong3, Giuseppe N. Giordano    1, 
Ewan R. Pearson    1,4, Nancy J. Cox2 & Paul W. Franks    1,5 

Obesity and type 2 diabetes are causally related, yet there is considerable 
heterogeneity in the consequences of both conditions and the mechanisms 
of action are poorly defined. Here we show a genetic-driven approach 
defining two obesity profiles that convey highly concordant and discordant 
diabetogenic effects. We annotate and then compare association signals 
for these profiles across clinical and molecular phenotypic layers. Key 
differences are identified in a wide range of traits, including cardiovascular 
mortality, fat distribution, liver metabolism, blood pressure, specific lipid 
fractions and blood levels of proteins involved in extracellular matrix 
remodelling. We find marginal differences in abundance of Bacteroidetes 
and Firmicutes bacteria in the gut. Instrumental analyses reveal prominent 
causal roles for waist-to-hip ratio, blood pressure and cholesterol content of 
high-density lipoprotein particles in the development of diabetes in obesity. 
We prioritize 17 genes from the discordant signature that convey protection 
against type 2 diabetes in obesity, which may represent logical targets for 
precision medicine approaches.

Cardiometabolic diseases are the leading cause of death globally, 
with obesity and type 2 diabetes mellitus (T2D) accounting for a large 
proportion of this burden1. The prevalences of obesity and T2D have 
risen sharply over the past decades worldwide2, corresponding with 
a shift to sedentary lifestyles and poor diet3. Even though obesity and 
T2D often coincide, their relationship is complex and remains incom-
pletely understood. Indeed, while more than 80% of people with T2D 
also have obesity, 10–30% of people with obesity appear metaboli-
cally healthy4–6. Conversely, metabolic abnormalities occur in ~30% of 
normal-weight individuals7–9. Likewise, despite weight loss improving 

glycaemic control in people with T2D10, when T2D occurs in people with 
normal weight, mortality rates are higher than those in people with 
overweight or obesity11,12. Here, we refer to these divergent features as 
‘discordant diabesity’. We focus on this unusual phenotype because it 
helps leverage the independent roles of excess adiposity and T2D in 
life-threatening disease.

To some extent, this discordance can be attributed to the impreci-
sion with which body mass index (BMI), the conventional metric used 
to define obesity, characterizes adiposity13,14. For instance, even when 
BMI is comparable, lean and fat mass distributions often vary from one 
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Profile decomposition
Further exploration of the molecular features of the discordant and 
concordant profiles revealed that some variants used to characterize 
these profiles deviated from the overall pattern of trait association 
for their respective SNP set. Using single-linkage clustering on the 
SNP–trait matrix (Extended Data Fig. 1c), we identified two outliers in 
the concordant profile, one near GCKR, associated with higher SHBG 
and lower liver enzymes (SHBG: 0.07 (95% CI: 0.07, 0.08), P = 7.5 × 10−199) 
and a second near TOMM40 associated with higher HDL (0.07 s.d. units 
per allele (95% CI: 0.06, 0.08), P = 3.7 × 10−107). In the discordant profile, 
the last variant to be aggregated to the clustering tree (that is, the SNP 
most distal from the other SNPs within its set) is located near SLC2A2 
and, in contrast to the overall discordant estimates, was associated 
with higher levels of AST and GGT (GGT: 0.02 s.d. units per allele (95% 
CI: 0.02, 0.03), P = 2.7 × 10−22).

External validation in BioVU
We sought replication of the discoveries outlined above in an independ-
ent European-ancestry cohort from BioVU, a de-identified collection of 
electronic health records and a linked biobank including inpatient and 
outpatient data from Vanderbilt University Medical Center (VUMC), a 
tertiary-care centre in Nashville, Tennessee, USA24–26. We constructed 
separate genetic risk score (GRS) coefficients for concordant and dis-
cordant profiles and assessed their association with multiple pheno-
types (Fig. 2 and Supplementary Table 4). We first confirmed that the 
concordant and discordant GRSs were associated with higher obesity 
risk, respectively (ORC = 1.03 per allele (95% CI: 1.03, 1.04), ORD = 1.02 
per allele (95% CI: 1.01, 1.02), pδ = 1.6 × 10−3) and that the concordant and 
discordant profiles were positively and negatively associated with dia-
betes diagnosis, respectively (ORC = 1.03 per allele, (95% CI: 1.02, 1.04), 
ORD = 0.95 per allele (95% CI: 0.94, 0.96), pδ = 3.2 × 10−49). Both scores 
were associated with increased odds of bariatric surgery (ORC = 1.05 
per allele (95% CI: 1.03, 1.06), ORD = 1.03 per allele (95% CI: 1.008, 1.06), 
pδ = 0.24). We found divergent associations in multiple diseases 
directly related to the main traits (for example, essential hypertension 

person to the next15. Genetics has helped provide pathophysiological 
explanations for discordant diabesity, whereby, collectively, common 
variants affecting adipose distribution mimic monogenic syndromes 
such as familial lipodystrophies16–21. Expanding our knowledge of the 
phenotypic signature of discordant diabesity using the quantitative 
framework of genetics may help elucidate the mechanisms by which 
the broader health consequences of excess adiposity varies from one 
person to the next.

Here, we characterize genetically determined discordant diabesity 
through a comparative analysis with its concordant counterpart (that 
is, where higher genetic risk of obesity and T2D coincide). We used a 
range of machine learning methods to undertake phenome-wide scans 
to identify traits other than T2D that distinctively characterize these 
profiles. We concluded by undertaking robust causal inference analyses 
to determine the causal relationships underlying discordant diabesity 
with other features of health and disease.

Results
Assembly of concordant and discordant diabesity profiles
An analysis flowchart is presented in Extended Data Fig. 1a. We first 
identified genetic instruments for BMI22 and T2D23 by cross-referencing 
publicly accessible genome-wide association study (GWAS) summary 
statistics, finding 67 relatively independent single nucleotide polymor-
phisms (SNPs) strongly associated with both conditions (P < 5 × 10−8). 
After alignment to the BMI-increasing allele, these variants were 
labelled as ‘concordant’ (48 SNPs) or ‘discordant’ (19 SNPs) according 
to the positive or negative sign of their coefficients for T2D, respec-
tively (Extended Data Fig. 1b and Supplementary Table 1; replication 
shown in Supplementary Table 2). Visual inspection of correlation 
patterns between BMI and T2D signals at each locus was undertaken 
using regional association plots (Supplementary Figs. 1 and 2).

Phenome-wide scans
Among the clinical phenotypes, we found that concordant and discord-
ant diabesity profiles differed predominantly in cardiometabolic fea-
tures including high-density lipoprotein (HDL) cholesterol, waist-to-hip 
ratio (WHR), waist circumference, and blood pressure (Fig. 1 and Sup-
plementary Table 3). Generally, the discordant profile was associated 
with a favourable phenotypic signature compared to the concordant 
profile. For example, systolic blood pressure (SBP) was lower in the dis-
cordant compared to the concordant profile (SBP: βC = 0.002 s.d. units 
per allele (95% confidence interval (CI): −0.001, 0.004), βD = −0.008 s.d. 
units per allele (95% CI: −0.012, −0.004), pδ = 1.39 × 10−4). We also found 
differences in risk of coronary heart disease (CHD) and stroke, which 
were lower in the discordant compared to the concordant profile (for 
example, CHD: odds ratio (OR)c = 1.01 per allele (95% CI: 1.01, 1.02), 
ORD = 0.98 per allele (95% CI: 0.97, 0.99), pδ = 1.3 × 10−6). The levels 
of biomarkers of liver function such as gamma-glutamyl transferase 
(GGT) and alanine aminotransferase (ALT) enzymes were lower in 
the discordant relative to the concordant profile (for example, ALT: 
βC = 0.008 s.d. units per allele (95% CI: 0.006, 0.011), βD = −0.011 (95% 
CI: −0.019, −0.003), pδ = 2.07 × 10−6). SHBG, a protein also produced 
in the liver, was higher in the discordant as opposed to the concord-
ant profile (βC = −0.008 s.d. units per allele (95% CI: −0.012, −0.004), 
βD = 0.013 s.d. units per allele (95% CI: 0.007, 0.019), pδ = 1.94 × 10−8). 
Additionally, the discordant profile was associated with higher mean 
corpuscular volume (βC = −0.002 s.d. units per allele (95% CI: −0.005, 
0), βD = 0.006 s.d. units per allele (95% CI: 0.002, 0.01), pδ = 8.76 × 10−4) 
and lower levels of urate (βC = 0.007 s.d. units per allele (95% CI: 
0.004, 0.01), βD = −0.005 s.d. units per allele (95% CI: −0.01, −0.001), 
pδ = 3 × 10−6) compared to the concordant profile. The odds of receiving 
treatment with alendronate was higher in the discordant than in the 
concordant profile, a drug indicated for osteoporosis (ORC = 0.99 per 
allele (95% CI: 0.99, 0.99), ORD = 1.001 per allele (95% CI: 1.001, 1.001),  
pδ = 3.26 × 10−6).
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Fig. 1 | Summary-based comparison of concordant and discordant profiles. 
Concordant and discordant GRS coefficients for traits where we found 
differences between profiles using GWAS summary data. All are per-allele effect 
sizes, in s.d. units for continuous outcomes and ORs for binary traits (diseases 
and self-reported medication). Traits shown had at least one estimate significant 
after 5% FDR correction and the difference between profiles was also significant 
after 5% FDR. Statistical tests were based on a z-distribution and were two-sided. 
Bars show 95% CIs. Sample sizes vary for every trait (N > 100,000 for all traits).
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(HT): ORC = 1.014 per allele (95% CI: 1.009, 1.019), ORD = 0.99 per allele 
(95% CI: 0.98, 0.99), pδ = 1.2 × 10−6). We also observed differences for 
other disease outcomes such as chronic kidney disease (ORC = 1.02 
per allele (95% CI: 1.01, 1.02), ORD = 0.98 per allele (95% CI: 0.97, 0.99), 
pδ = 2.9 × 10−6) and osteoarthrosis (ORC = 1.01 per allele (95% CI: 1, 1.01), 
ORD = 1.02 per allele (95% CI: 1.01, 1.03), pδ = 0.012). Because both scores 
were also strongly associated with type 1 diabetes (T1D; ORC = 1.05, 
(95% CI: 1.03, 1.05), ORD = 0.96, (95% CI: 0.94, 0.97), pδ = 4.8 × 10−17), 
we repeated the analyses excluding individuals with T1D. This attenu-
ated the differences between concordant and discordant profiles for 
a small subset of traits including diabetic retinopathy and end-stage 
chronic kidney disease.

We also assessed the association of each GRS to multiple labora-
tory measurements in individuals of European (n > 68,000) and African 
American (n > 14,000) descent (Supplementary Table 5). The value per 
individual was computed as the median value over all measurements 
after a quality-control pipeline described in detail elsewhere27. Signifi-
cant differences were found for several glycaemic traits consistent with 
the diabetes risk profiles (for example, HbA1c: s.d. difference per con-
cordant allele: 0.05 (95% CI: 0.04, 0.06), s.d. difference per discordant 
allele: −0.06 (95% CI: −0.08, −0.05), pδ = 1.5 × 10−39). We confirmed the 
difference between the two profiles in HDL and observed differences 
in the other two main lipid fractions (for example, triglycerides: s.d. 
difference per concordant allele: 0.02 (95% CI: 0.01, 0.03), s.d. differ-
ence per discordant allele: −0.04 (95% CI: −0.05, −0.03), pδ = 1.5 × 10−14). 
The findings for red blood cell phenotypes were also replicated, and 
additional differences were found in leucocyte count, urea, creatinine, 
phosphate, C-reactive protein and parathyroid hormone (PTH), all of 

which were higher in carriers of concordant SNPs. Of the liver enzymes, 
only ALT values were available for comparison, whose levels were 
weakly associated with the concordant but not the discordant GRS 
(s.d. difference per concordant allele: 0.14 (95% CI: 0.02, 0.26), s.d. 
difference per discordant allele: 0.06 (95% CI: −0.08, 0.2), pδ = 0.2). In 
individuals of African American descent, significant differences were 
found in HbA1c, glucose and urea levels in urine.

Differences in mortality in UK Biobank
We examined the relationship of GRSs to mortality owing to cardio-
vascular events in >337,000 participants of European descent from 
the UK Biobank (mean follow-up of 11.8 years). Around 35,000 deaths 
were reported, of which approximately 20% were related to cardiovas-
cular events. The concordant GRS was associated with higher mortality 
(hazard ratio (HR) per allele: 1.01 (95% CI: 1.01, 1.02)), whereas the dis-
cordant GRS was not (HR per allele: 0.99 (95% CI: 0.98, 1.01), pδ = 0.02). 
However, when assessing each SNP separately, we observed that the 
concordant variant near TOMM40 was associated with lower incidence 
of cardiovascular mortality (HR per allele: 0.85 (95% CI: 0.81, 0.90), 
P = 4.54 × 10−9 and Supplementary Table 6).

Differences in serum metabolites
Of the metabolites available, those related to lipid subfractions were the 
strongest discriminators of concordant and discordant profiles (Fig. 
3 and Supplementary Table 7). Discordant diabesity was associated 
with higher cholesterol in lipoprotein particles of all densities, while 
lower triglyceride content in lipoprotein particles of low densities, as 
opposed to concordant diabesity (for example, free cholesterol in HDL: 
βC = −0.008 s.d. units per allele (95% CI: −0.01, −0.005), βD = 0.008 s.d. 
units per allele (95% CI: 0.004, 0.013), pδ = 3.09 × 10−10). Discordant 
diabesity also correlated with lower levels of branched-chain amino 
acids and aromatic amino acids, whereas in concordant diabesity they 
tended to be higher (total concentration of branched-chain amino acids: 
βC = 0.004 s.d. units per allele (95% CI: 0.002, 0.008), βD = −0.008 s.d. 
units per allele (95% CI: −0.012, −0.003), pδ = 1.46 × 10−6).

Differences in gut microbiota
There were no differences between pooled concordant and discord-
ant estimates for bacterial abundance in the gut that were statistically 
significant after false discovery rate (FDR) correction. Across ten taxa, 
several were nominally associated (P < 0.05) within either the con-
cordant or the discordant profiles (Fig. 3 and Supplementary Table 
8). Four of these belonged to the phylum Bacteroidetes (family Bacte-
roidaceae and geni Bacteroides, Parabacteroides and Butyricimonas), 
all of which were less abundant in discordant relative to concordant 
diabesity (for example, family Bacteroidaceae: βC = 0.005 s.d. units 
per allele (95% CI: 0.001, 0.008), βD = −0.004 s.d. units per allele (95% 
CI: −0.004, −0.01), pδ = 0.004). The remaining taxa belonged to the 
phylum Firmicutes, most of them members of the obligately anaerobic 
class Clostridia, which tended to be more abundant in the discordant 
profile compared to the concordant profile (for example, genus Sub-
doligranulum: βC = −0.003 s.d. units per allele (95% CI: −0.006, 0.001), 
βD = 0.006 s.d. units per allele (95% CI: 0.007, 0.011), pδ = 0.006). The 
family Lactobacillaceae was also lower in the discordant compared to 
the concordant profile (βC = 0.006 s.d. units per allele (95% CI: 0.001, 
0.01), βD = −0.006 s.d. units per allele (95% CI: −0.014, 0.003), pδ = 0.02).

Differences in serum protein levels
We found a significant difference between concordant and dis-
cordant estimates after FDR correction in a single protein: heparan 
sulfate 6-O-sulfotransferase 2 (HS6ST2), which was higher in discord-
ant relative to concordant diabesity (βC = −0.01 s.d. units per allele 
(95% CI: −0.017, 0), βD = 0.03 s.d. units per allele (95% CI: 0.02, 0.04), 
pδ = 7.52 × 10−7; Fig. 3). These analyses may be underpowered given 
that the effect of variants in trans is likely to be weaker than that of 
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Fig. 2 | Comparison of concordant and discordant profiles in BioVU. 
Concordant and discordant GRS coefficients for traits where we found 
differences between profiles in BioVU. Analyses of disease endpoints included 
data for up to 48,544 individuals. Continuous outcomes included data for up 
to 68,724 and 13,661 individuals of European and African descent, respectively. 
All are per-allele effect sizes, in s.d. units for continuous outcomes and ORs for 
disease endpoints. Traits shown had at least one estimate significant after 5% FDR 
correction and the difference between profiles was also significant after 5% FDR. 
Statistical tests were based on a z-distribution and were two-sided. Bars show  
95% CIs. CRP, C-reactive protein.
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those in the gene encoding the protein. Thus, we also searched for 
strong cis effects (P < 5 × 10−8) in the discordant profile. We found one 
association between the discordant variant near PPARG and metal-
loproteinase inhibitor 4 (TIMP4; β = −0.28 s.d. units per allele (95% CI: 
−0.35, −0.2), P = 5 × 10−14).

Functional annotation using DEPICT
We used the Data-driven Expression Prioritized Integration for Com-
plex Traits (DEPICT)28 tool to compare the enrichment for tissues and 
biological pathways in each profile (Supplementary Figs. 3–5). The 
most notable difference was the significant enrichment (P < 0.05) for 
adipose tissue in the discordant profile, which was not found in the 
concordant profile. We also found significant enrichment for adrenal 
glands, ileum and kidney in the discordant but not in the concordant 
profile. Conversely, there was significant enrichment for endocrine tis-
sue and retina in the concordant but not the discordant profile. Tissues 
for which there was significant enrichment in both profiles included 
pancreas and myometrium.

Gene expression and splicing in discordant diabesity
We found 506 genes whose expression/splicing was significantly influ-
enced by concordant SNPs and 76 which were influenced by discord-
ant SNPs across multiple tissues in GTEx29. In eQTLGen30, we found 
significant associations of concordant SNPs with expression of 493 
genes. Discordant SNPs were associated with 94 genes. Around 46% of 
all the associations found in GTEx were replicated in eQTLGen (47% of 
the genes associated with concordant SNPs; 39% of the genes associ-
ated with discordant SNPs).

To identify genes most likely involved in the molecular mecha-
nisms leading to discordant diabesity, we chose genetic instruments 
for the 76 genes whose expression was influenced by discordant SNPs 
in the corresponding tissues in GTEx, and for the 94 genes in eQTLGen. 
A prerequisite for these instruments was that they are strongly associ-
ated with BMI (P < 5 × 10−8). We followed the SMR & HEIDI approach31, 
which utilizes the strongest instrument for gene expression/splicing 

within the cis region of the corresponding gene (±500 Mb from the 
transcription start site) to calculate an estimate of the pleiotropic 
association across gene expression, BMI and T2D risk. This approach 
then determines if the association found reflects true pleiotropy rather 
than mere linkage by testing for heterogeneity of the estimates of SNPs 
in linkage disequilibrium (LD) with the lead SNP. We found 17 genes 
with robust expression signals for obesity and T2D whose directions 
of effect were in contrast (FDR-corrected P < 5%, pHEIDI > 0.01; Fig. 4 and 
Supplementary Table 9). To locate the most likely tissue of action for 
these genes, we followed a scoring procedure32 through which a tissue 
specificity score is derived for each gene. This is calculated as (i) the 
proportion of median expression (in transcripts per million) across 
specific tissue types catalogued in GTEx and (ii) evidence of promoter/
enhancer histone marks surrounding the genetic instruments, derived 
from multiple cell lines classified anatomically by the RoadMap Epig-
enomics Project33 that could be mapped to tissue samples in GTEx. For 
each gene, we sorted tissues where we found pleiotropic links accord-
ing to its specificity score and presence of promoter/enhancer signals 
for the genetic instrument. This allowed us to prioritize potential main 
action sites of relevance to discordant diabesity, for example, LYPLAL1 
in adipose tissue and JAZF1 in vasculature and pancreas, while confirm-
ing the widespread effects of SLC22A3 across multiple organs.

Discordant diabesity genes as therapeutic targets
We performed a lookup of the genes identified previously in the com-
prehensive public access databases DGIdb34 and PHAROS35. Notably, 
there was evidence of interaction between three of the genes with 
strong pleiotropic associations (SLC2A2, SLC22A3 and KCNJ11) and 
metformin in both databases. SLC22A3 interacted with various qui-
noline derivatives (decynium-22, disprocynium-24, found in both 
databases), SarCNU (an antineoplastic drug in phase 2 clinical trials), 
derivatives of the alpha blocker phenoxybenzamine, corticosterone 
and colchicine. There is also evidence of potent inhibition of GLUT2, the 
protein product of SLC2A2, by a specific class of pyrazolopyrimidines. 
SLC38A11, MAU2 and FBXO46 are classified in the ‘Tdark’ level of target 
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Fig. 3 | Comparison of concordant and discordant profiles in molecular 
phenotypes. Concordant and discordant GRS coefficients for traits where we 
found differences between profiles in molecular phenotypes. All are per-allele 
effect sizes, in s.d. units. Findings in metabolites shown here are derived from 
TwinsUK + KORA F4 (N = 7,824) and the UK Biobank (N = 115,078). Protein data 
were derived from the INTERVAL study (N = 3,301). Traits shown in these two 

domains had at least one estimate significant after 5% FDR correction, and the 
difference between profiles was also significant after 5% FDR. Statistical tests were 
based on a z-distribution and were two-sided. Bars show 95% CIs. Microbiome 
data came from the MiBioGen consortium (N = 18,340); the genii shown here had 
at least one estimate nominally significant, and the difference between estimates 
was also nominally significant (two-sided P < 0.05).
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development in the PHAROS database, composed of understudied 
targets, while the remaining genes fall under the ‘Tbio’ level, which 
includes targets with no known interactions yet satisfying other con-
ditions, such as having functional annotations based on experimental 
evidence, repeated mentions in publications indexed in PubMed, and 
50 or more available commercial antibodies.

Instrumental variable analyses
To quantify the potential impact of traits that emerged from the previous 
steps on offsetting the diabetogenic effect of obesity, we derived genetic 
instruments for each of these traits using SNPs that were also robustly 
associated with BMI (P < 5 × 10−8) and decomposed these instruments 
into two groups based on their direction of effect on the trait of interest 
after alignment to the BMI-increasing allele. We then constructed two 
GRSs, one for each group of variants, and calculated the T2D risk con-
ferred by each GRS using summary data from the DIAGRAM consortium; 
we focused on GRSs that confer protection from T2D.

From the clinical phenotypes, the GRSs that conveyed higher BMI 
but lower WHR and SBP were significantly associated with lower T2D 
risk (Extended Data Fig. 2a and Supplementary Table 10). For example, 
the estimate for the GRS associated with higher BMI but lower WHR had 
an OR of 0.96 per allele (95% CI: 0.94–0.98, P = 6.71 × 10−5). Some traits in 
the clinical phenotypes required instruments to be in cis with the gene 

encoding the corresponding protein (for example, SHBG), to prevent 
confounding due to pleiotropy. We found two such instruments for 
ApoA1 and SHBG, respectively, which were not associated with T2D risk 
(P = 0.17 and 0.84, respectively; Supplementary Table 11) despite their 
strong association with higher BMI. From the analysis of metabolites, 
we found two GRS coefficients associated with higher BMI and lower 
T2D risk. The strongest protection was found for the GRS conferring 
higher total concentration of lipoprotein particles (OR: 0.98, 95% CI: 
0.96, 0.99, P = 0.006; Supplementary Table 12), consistent with our 
findings in the phenome scans.

To test for the potential causal effect on diabesity discordance 
of HS6ST2 and TIMP4, the two proteins identified in the previous 
analysis, we searched for valid instruments (P value for both protein 
levels and BMI < 5 × 10−8) in the cis region of the corresponding genes. 
We could only derive a valid instrument for TIMP4. Using the SMR & 
HEIDI method, we found a significant pleiotropic effect (P = 3.8 × 10−7, 
pHEIDI = 0.4; Extended Data Fig. 2b). However, we noted that the lead 
instrument and its closest proxies were located within PPARG, which 
is proximal to TIMP4.

No instruments for the microbial taxa where we found nominally 
significant differences reached the significance threshold required 
for BMI. Extending the exploration to other taxa revealed a single sig-
nificant association (P < 5 × 10−8) of the A allele of rs1530559 (a variant 
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within the lactase persistence haploblock36 in LD with the lactase func-
tional variant rs4988235 (r2 = 0.4)) with higher BMI and lower abun-
dance of the order Bifidobacteriales. This variant was not associated 
with T2D risk (P = 0.76).

Individuals within the top decile for each profile
To determine the relevance of concordant and discordant profiles 
in people with obesity (≥30 kg/m2), we focused on this subgroup in 
UK Biobank who localized to the top decile of one of the two profile 
GRSs37. Consistent with a binomial distribution, 18% of individuals with 
obesity were present in the two groups of extreme GRSs. The health 
characteristics of these individuals differed from all others with obe-
sity (Supplementary Table 13) in several ways: for example, HbA1c lev-
els in individuals with obesity and the extreme concordant GRS were 
higher compared to all other individuals with obesity (Kruskal–Wallis 
P = 5.94 × 10−12). Conversely, individuals with obesity and an extreme 
discordant GRS had significantly lower HbA1c compared to the rest of 
individuals with obesity (P = 2.71 × 10−42). Persons with obesity at both 
extreme GRSs are also distinguished from the rest by the main clinical 
features identified in our previous analyses such as SBP, HDL and ALT. 
WHR did not adequately separate the concordant or discordant extreme 
GRS from the wider group of people with obesity. However, because 
the initial phenome scan revealed a gender-specific difference in WHR 
between concordant and discordant profiles, (Extended Data Fig. 1c), 
we performed an additional analysis for WHR stratified by sex, where 
we found that women with extreme discordant GRS had significantly 
lower WHR compared to other women with obesity (P = 6.05 × 10−10).

Comparison with previous studies of discordant diabesity
We compared our results to those obtained in three previous investiga-
tions of discordant variants. For instance, Mahajan et al.23 calculated 
the change in estimates of SNPs associated with T2D before and after 
adjustment for BMI. They found 15 loci where signals were enhanced 
after adjustment, which was attributed to discordance. Consistently, 
the SNP effects in the diabesity discordant profile derived here were 
enhanced, while those of the concordant profile were attenuated after 
adjustment (as described in ref. 38; Supplementary Table 14). The change 
in SNP effect estimates was consistently associated with SNP effects on 
BMI (R2 = 0.8; Supplementary Fig. 6). However, we observed that for 
four of the 19 SNPs (20%) from the discordant set near PPARG, JAZF1, 
KCNJ11 and LYPLAL1, the change in SNP effect estimates was less than 
predicted. These discordant variants are those most likely to directly 
alter the relationship between BMI and T2D. This is consistent with 
the known effect of PPARG on adipocyte differentiation, and with our 
findings linking adipose tissue-specific gene expression at the LYPLAL1 
locus with higher BMI but lower T2D risk. Similarly, we found that KCNJ11 
and JAZF1 had discordant effects on BMI and T2D, which is related to 
tissue-specific expression in heart and arteries; variants at both loci 
are known to influence insulin secretion.

We also sought replication of a finding from Pigeyre et al.27 linking 
discordance to levels of the protein IGFBP-3 in blood. We were not able 
to replicate this finding (Supplementary Table 15), possibly due to dif-
ferences in the characteristics of the cohorts where this relationship 
was found. For our analysis, we used summary data from the INTERVAL 
study39, which includes predominantly healthy blood donors of Euro-
pean ancestry. In contrast, Pigeyre et al. used data from the ORIGIN trial, 
a cohort composed of individuals of European (47%) and Latin American 
(53%) ancestries, enriched for T2D cases (>80% had a prior diagnosis).

Finally, we searched for the SNPs comprising the concordant and 
discordant profiles described above in the cluster analysis of discordant 
SNPs performed by Huang et al.21. Fourteen of the 19 discordant SNPs 
identified in our analysis (78%) are among or in LD with the 62 SNPs 
identified by Huang et al (r2 > 0.1 within a 1-Mb window, as specified 
in the publication; Supplementary Table 16). Two of the subclusters 
described by the authors were significantly overrepresented by these 

14 SNPs: 5 (ARAP1, ADCY5, PPARG, TCF7L2, KCNJ11-NCR3LG1) were in 
the subcluster characterized mainly by higher BMI and lower fast-
ing glucose and risk of T2D (enrichment P = 1.6 × 10−3) and 4 (GRB14, 
LYPLAL1, ADAMTS9 and VEGFA) in the subcluster that conveyed an 
apparent protective effect on multiple cardiometabolic traits via 
peripheral adipose distribution (higher BMI and body fat percent-
age, and lower WHR; enrichment P = 0.04). Four concordant variants 
(at GCKR, TOMM40, AKAP6 and PPP1R3B-TNKS-MSRA) were also among 
the 62 SNPs described by Huang et al. As opposed to other variants in 
the concordant set, the variant in AKAP6 was associated with lower SBP 
(in ICBP GWAS: β = −0.25 mm Hg (95% CI: −0.38, −0.12), P = 1.25 × 10−4) 
and the variant near PPP1R3B-TNKS-MSRA was associated with higher 
HDL (β = 0.02 s.d. units (95% CI: 0.012, 0.027), P = 1.72 × 10−6). As we 
found and discussed in our analyses, TOMM40 and GCKR deviate from 
the concordant set owing to their favourable associations with lipids 
and liver enzymes that resemble the discordant set, a pattern that was 
also reported by Huang et al.

Discussion
Obesity conveys heterogenous effects in cardiometabolic health, mak-
ing disease prevention and management challenging. Here we used 
genetics to deconstruct the obesity phenotype into concordant and 
discordant diabesity, with strikingly different health characteristics 
beyond diabetes and obesity. Through transcriptomic, metabolomic 
and metagenomic analyses, we identified biomarkers that shed light on 
mechanisms of action and may aid risk stratification. Further analyses 
identified potential targets for drug development and drug repurposing.

Obesity and T2D often coalesce, owing largely to the mediat-
ing effect of peripheral insulin resistance caused by excess adi-
posity. The trait discordances described here reflect mechanisms 
involved in uncoupling obesity risk from T2D risk, thereby exposing 
diabetes-independent pathways through which obesity affects dis-
ease risk, for example, through adipose distribution. It is likely that 
both a higher capacity to expand adipose tissue in the gluteo-femoral 
compartment40,41 and lower abdominal region around organs such 
as the liver, which might underlie the difference seen in biomarkers 
of liver failure42, play important and independent roles in genetically 
determined diabesity discordance.

Another key phenotypic distinction between concordant and dis-
cordant profiles concerns blood pressure. Although T2D often causes 
vascular dysfunction, changes in the vascular bed may also precede 
metabolic perturbations through nutrient and hormonal flux43,44, 
affecting pancreas, muscle and adipose tissue45. For instance, capillary 
recruitment and permeability are key determinants of whole-body 
glucose uptake and glycaemic variation46.

Our findings relating to lipid metabolites support the use of more 
refined profiling of lipid subfractions to help determine risk in peo-
ple with obesity. The cholesterol content of HDL particles and BCAA 
levels appear especially informative biomarkers47, possibly because 
they enhance glucose homeostasis in obesity by improving cross-talk 
between peripheral tissue and the liver48.

Despite the contrasting health consequences of the two diabesity 
profiles, bariatric surgery was equally likely, which may predispose one 
group to health benefits following surgery, whereas the other may not 
benefit in this way.

We found a significant difference between concordant and dis-
cordant profiles in levels of HS6ST2, a protein expressed in brain, 
kidney and ovaries, which in animal knock-out models shows a strong 
association with increased body weight and insulin resistance, possibly 
owing to enhanced adipocyte differentiation49,50. We found only one 
robust pleiotropic effect for discordant diabesity at TIMP4, which is 
proximal to PPARG, the likely causal gene. Moreover, PPARG activator 
medication inhibits matrix metalloproteinases51,52. TIMP4 has been 
associated with adipogenesis, possibly through its effect on the adipose 
tissue extracellular matrix in obesity53.
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The colocalization analyses underscore the importance of tis-
sue pleiotropy and tissue cross-talk in the molecular mechanisms 
of diabesity discordance. This is especially evident for SLC22A3, but 
also for other potential targets such as LYPLAL1, whose differential 
expression in both adipose tissue and adrenal glands appears linked 
to discordant diabesity. Moreover, three of the genes with pleiotropic 
links to T2D risk (SLC2A2, SLC22A3 and KCNJ11) interact with metformin. 
This suggests a potential effect of metformin in shifting individuals 
with obesity from a concordant to a discordant phenotype. SLC2A2 
encodes GLUT2, which is part of the glucose sensor apparatus in 
pancreas and liver and is involved in intestinal glucose absorption in 
the gut54. Variants in this gene have been associated with preference 
for sugary foods55 and modified response to metformin56,57. SLC22A3 
encodes OCT3, a protein widely expressed across tissues that aids 
adipocyte beiging58 and perivascular adipose tissue remodelling59. 
KCNJ11 encodes the Kir6.2 subunit of the ATP-sensitive potassium 
channel. As this is the target of sulphonylureas, this group of drugs may 
also harbor potential candidates for the phenotype shift to discord-
ance in diabesity. The other ligands identified in the lookup may also 
constitute potential therapeutic agents to prevent cardiometabolic 
complications in obesity. For the rest of the genes, especially those in 
the ‘Tdark’ level in PHAROS, follow-up functional experiments in the 
tissues indicated by the lead genetic instruments and its corresponding 
epigenetic annotations are warranted.

Certain SNPs deviate from the overall association pattern of 
the profile within which they reside. In the concordant profile, the 
BMI-increasing allele of the variant near TOMM40 increases T2D risk 
but, unlike other SNPs in the same profile, is associated with a better 
lipid profile and lower cardiovascular disease mortality. This gene 
and others in its proximity (APOC1 and APOE) have been consistently 
implicated in lipid metabolism60. In the discordant profile, the variant 
SLC2A2 conveys protection against T2D risk despite being associated 
with heavier weight and higher blood pressure, and worse liver function 
and dyslipidaemia. The opposite pattern was observed in the concord-
ant variant in GCKR, which encodes a regulatory protein that inhibits 
glucokinase. This reflects disparate phenotypic effects of modulating 
the glucose sensor apparatus at different levels54. Deeper characteriza-
tion of these mechanisms can further improve obesity stratification.

Although no statistically robust differences were observed in gut 
microbiota between the two diabesity profiles, possibly owing to low 
statistical power, nominal differences emerged in taxa belonging to the 
Bacteroidetes and Firmicutes phyla, which together constitute 90% of 
the human intestinal flora61. Our results indicate higher Firmicutes and 
lower Bacteroidetes abundance in discordant diabesity, which may 
result in enhanced production of short-chain fatty acid species such as 
butyrate, which is involved in glucose-lowering and anti-inflammatory 
mechanisms62.

Previous strategies to characterize the discordance between BMI 
and metabolic risk have been based on predefined sets of phenotypes 
traditionally linked with metabolic status19,21. Our phenome-wide 
approach consisted of leveraging the wealth of genetic associations 
harvested to date to dissect the phenotypic structure relevant for 
discordant diabesity, having three main advantages: (1) variables defin-
ing the differential phenotypic structure of each profile are selected a 
in data-driven manner across many phenotypic layers; (2) leveraging 
genetic data across multiple datasets enhances power and minimizes 
cohort-specific biases that would be anticipated if analyses were per-
formed in a single cohort; and (3) although concordant and discordant 
diabesity profiles may be driven by molecular mechanisms that are 
independent of DNA variation, using germline DNA variants helps miti-
gate reverse causality and other sources of confounding that hamper 
the interpretation of associations for most other types of biological var-
iation and phenotypes. An example of this is the analysis of epigenetic 
factors, which has led to identification of obesity sub-phenotypes even 
in the context of genetic homogeneity, as found in monozygotic twins 

that are discordant for adiposity traits63. However, these findings might 
be driven by variations in environmental exposures and behaviours that 
exist within and between twin pairs, as well as confounded by factors 
such as age, which differed between twin pairs in the reported analyses.

In conclusion, obesity profiles with either diabetogenic or anti-
diabetogenic proclivities reveal distinctive aetiological subtypes, 
with key differences in fat distribution, blood pressure and cholesterol 
content in HDL particles. We identified 1 protein (TIMP4) and 17 genes 
potentially involved in the molecular mechanisms leading to diabesity 
discordance, involving pleiotropic effects across multiple tissues.

Methods
Study populations
BioVU. Collection of electronic health records in BioVU was established 
in 1990 and includes data on billing codes from the International Classifi-
cation of Diseases, 9th and 10th editions (ICD-9 and ICD-10). Disease phe-
notypes (‘phecodes’) are derived from these billing codes as described 
previously24 and case, control and exclusion criteria are defined. Two 
codes on different visit days were required to instantiate a case for each 
phecode. The biobank was launched in 2007 and comprises excess blood 
samples that their donors had consented for use in biomedical research. 
Details of programme operations, ethical considerations, continuing 
oversight and patient engagement are published elsewhere25. DNA sam-
ples were analysed using genome-wide genotyping platforms including 
Illumina multi-ethnic genotyping array. After quality assessment, the 
genotype data were then imputed to the Haplotype Reference Consor-
tium reference panel at the Michigan imputation server. Populations of 
African American and European descent were identified by projecting 
individuals onto the major principal-component space derived from 
1000 Genomes reference panel.

UK Biobank. The UK Biobank is an ongoing prospective study of 
approximately 500,000 adults. Initial enrolment took place from 2006 
to 2010 and included individuals aged 40–69 years across the United 
Kingdom64. It has collected comprehensive genetic and phenotypic 
information, biochemical assays and longitudinal health outcomes 
through health records, such as hospitalization and mortality. The 
genotypes were assayed using the UK Biobank Lung Exome Variant 
Evaluation and the Applied Biosystems UK Biobank Axiom Array, and 
imputed to the Haplotype Reference Consortium panel. Population 
structure was also assessed using principal-component analysis. We 
excluded individuals with inconsistency between their reported and 
genetic sex, had sex chromosome aneuploidy or were outliers for 
heterozygosity or missingness. Only individuals who were included in 
the calculation of genetic principal components were included, which 
ensures minimal genetic kinship with other participants.

Single-nucleotide polymorphism selection to construct 
concordant and discordant genetic profiles
We cross-referenced the largest GWAS for BMI and T2D and extracted 
common biallelic SNPs (minor allele frequency (MAF) > 1%). Inser-
tions, deletions and potentially ambiguous palindromic SNPs (A/T or 
C/G alleles with MAF > 30%) were excluded. Because both GWAS were 
conducted predominantly in populations of European descent, we 
used 1000 Genomes EUR reference panel for clumping (r2 < 0.01 over a 
500-kb window) to identify nearly independent SNPs that were strongly 
associated with both conditions (P < 5 × 10−8). The directions of the 
effect of these SNPs on T2D were consistent in a second independent 
set of GWAS summary statistics extracted from the FinnGen database65 
(Supplementary Table 2).

Phenome-wide scans
We extracted association data for concordant and discordant SNPs 
from a variety of sources. From the curated repository Open GWAS66, 
which we queried using the ‘ieugwasr’ package in R, we gathered data 
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for >3,500 traits derived from UK Biobank and other consortia for a 
variety of traits; these traits are termed ‘clinical phenotypes’. In cases 
where the effect of a SNP on a trait was not found, we looked for the 
effect of the nearest proxy SNP up to an r2 of 0.5 over a 500-kb window. 
We only kept estimates obtained from European ancestry popula-
tions in order to be consistent with the GWAS used to identify the 
genetic profiles. To prevent inclusion of inflated signals due to low 
sample size, we only included studies of more than 500 individuals; 
for binary traits, we required at least 25 minor alleles in the small-
est group67. We calculated z-scores by dividing the β coefficients by 
their corresponding standard errors, and then we computed stand-
ardized effect sizes as a function of MAF and sample size n using  
equations (1) and (2) (ref. 31):

SE = 1
√2 ×MAF × (1 −MAF) × (n + z2)

(1)

β = z × SE (2)

We aligned all the estimates from these scans to the BMI-increasing 
alleles, so that they represent phenotypic variations associated with 
higher BMI in both profiles.

We also obtained data for 657 blood metabolites68,69 and 3,282 
proteins in plasma39. Associations with several bacterial taxa in the 
gut were obtained from the MiBioGen consortium70. Association with 
expression and splicing of nearby genes in multiple tissue samples 
and in whole blood were obtained from data generated by GTEx and 
eQTLGen consortia, respectively.

Profile comparison
We then compared the effects of discordant versus concordant SNPs 
for every trait in two stages: we first obtained the combined effect of 
concordant (βC) and discordant (βD) SNPs separately using a 
random-effects meta-analysis with the Paule–Mandel estimator of 
between-SNP variance τ2 (refs. 71,72). We then calculated their difference 
δ = |βC − βD| and computed its standard error as SE2δ = SE2C + SE2D73. We 
excluded from these analyses T2D traits (Supplementary Table 17). 
Traits in which any of the combined estimates βC or βD and δ were sta-
tistically significant after 5% FDR correction were taken forward to 
stage two, where we converted the effect estimates for each SNP and 
the selected traits to z-scores and placed them in a SNP–trait matrix, 
with SNPs coded as ‘0’ if concordant and ‘1’ if discordant. We then 
trained several Random Forest classifiers (1,000 iterations) to this 
matrix, which attempted to classify SNPs in their correct category, and 
used the Boruta algorithm74 to identify which traits were relevant to 
distinguish discordant from concordant SNPs. Briefly, this algorithm 
creates randomly shuffled copies of all traits in the SNP–trait matrix, 
and then evaluates for each trait if its contribution to the accuracy of 
decision trees in the Random Forest is higher than its corresponding 
random set.

Genetic risk score analyses
Concordant and discordant GRSs for an individual i were calculated as:

PRSPi =
MP

∑
j∈P
Gij (3)

Where P is the set of MP SNPs belonging to the concordant or discord-
ant profiles and Gij is the genotype for SNP j in individual i. In BioVU, asso-
ciation analyses were carried out for each GRS using R package ‘PheWAS’ 
(v0.99.5-5)24. We kept phecodes with at least 200 cases67 and identified 
those associated with either of the GRS coefficients and a significant 
difference between the estimated effects after a 5% FDR correction.

In the UK Biobank, we examined the relationship of GRSs to mortal-
ity due to cardiovascular events in individuals followed up to the latest 

censor date (30th September 2021) using Cox regression. Primary 
cause of death was ascertained using ICD-10 codes reported in death 
certificates (Supplementary Table 18). All association models were 
adjusted for age, sex and first ten genetic principal components.

SMR & HEIDI
The SMR method consists of identifying for a protein or gene the 
strongest association signal, which is used as a genetic instrument to 
test for its pleiotropic effect on an outcome. The HEIDI method consists 
of calculating the heterogeneity in the estimates of SNPs in LD with 
the lead SNP used in SMR. A higher pHEIDI value means heterogeneity is 
less likely, which supports true pleiotropy across the gene/protein and 
outcome signal, while a lower pHEIDI value means there is heterogene-
ity in the estimates, and the SMR signal is probably due to linkage. We 
consider an association to be true pleiotropy if pHEIDI > 0.01 (ref. 75). We 
retained signals where we found evidence of true pleiotropy for both 
BMI and T2D.

Scoring method using epigenetic annotation
The scoring method to identify the most likely tissue of action assumes 
that if a genetic instrument for the expression of a gene in a certain 
tissue where it is highly expressed (that is, high tissue specificity) is in 
or close (in LD) to a promoter/enhancer region in the same tissue, and 
this genetic instrument is also associated with an outcome, then it is 
likely that the pleiotropic association on the outcome is due to pertur-
bation of gene activity in that tissue. Promoter/enhancer signals were 
obtained by querying the RoadMap Epigenomics Project through the 
‘haploR’ package in R.

Genes as therapeutic targets
The lookups in DGIdb and PHAROS were performed using the 
web-based tool. DGIdb assigns an interaction score to the drug–gene 
interactions, which is the result of combining publication count, 
source count, relative drug specificity and relative gene specificity. 
The PHAROS database classifies targets into four ‘Target Develop-
ment Levels’, according to the evidence of drug interactions avail-
able: ‘Tdark’ contains understudied targets, ‘Tbio’ contains highly 
studied targets but without interaction with compounds, ‘Tchem’ 
includes targets that bind to small molecules, and ‘Tclin’ interact with 
approved drugs.

All analyses were done using packages within the R environment 
(v4.1.2)76.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The GWAS summary data analysed in this study are available from the 
GIANT (https://portals.broadinstitute.org/collaboration/giant/index.
php/GIANT_consortium) and DIAGRAM (https://diagram-consortium.
org/) consortia websites, the Open GWAS database (https://gwas.
mrcieu.ac.uk/), the GTEx consortium website (https://gtexportal.
org/home/ and the MiBioGen repository (https://mibiogen.gcc.rug.
nl/). UK Biobank data are available through a procedure described at 
http://www.ukbiobank.ac.uk/using-the-resource/. Individual-level 
genetic and clinical data from BioVU cannot be shared publicly due to 
patient confidentiality. However, summary statistics can be viewed in 
tabular form at https://phewascatalog.org/labwas/. The DGIdb and 
the PHAROS databases can be accessed online at https://www.dgidb.
org/ and https://pharos.nih.gov/, respectively.

Code availability
The codes used for our analyses are available at https://github.com/
danielcoral/DVA_codes/.
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Extended Data Fig. 1 | Analysis flowchart and profile identification. Panel 
A: Analysis flowchart. Panel B: BMI and T2D risk estimates of concordant and 
discordant SNPs after alignment to the BMI increasing allele. Panel C: summary-
based concordant and discordant GRS coefficients (standard deviation units for 
continuous traits, log OR for binary traits). Traits shown have at least 1 estimate 
significant after 5% FDR correction and the difference between profiles is also 

significant after 5% FDR. Statistical tests were based on a Z-distribution and were 
two-sided. Bars show 95% confidence intervals. Sample sizes vary for every trait 
(> 100.000 for all traits). The heatmap shows the Z-scores of the SNPs in every 
trait, with the single-linkage tree at the bottom, separately for concordant and 
discordant SNPs.
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Extended Data Fig. 2 | Traits with potential causal effect on diabesity 
discordance. Panel A: Traits where a difference was found in the comparison 
of profiles and one of the two direction-specific GRS associated with BMI was 
associated with lower risk of T2D (two-sided Z-statistic P < 0.05). To derive the 
GRS we used BMI data from the GIANT + UK Biobank meta-analysis (N = 681,275). 
WHR data came from the GIANT consortium (N = 212,244). SBP data came from 

the meta-analysis performed by the ICBP (N = 757,601). Metabolite data came 
from the UK Biobank (N = 115,078). Estimates represent T2D OR, bars represent 
95% confidence intervals, which are derived from the DIAGRAM meta-analysis 
(N = 158,186). Panel C: Regional association plot showing the pleiotropic effect 
of genetic instruments for blood levels of TIMP4 protein and high BMI and lower 
T2D risk. Protein data was derived from the INTERVAL study (N = 3,301).
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The GWAS summary data analysed in this study are available from the GIANT (https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium)
and DIAGRAM (https://diagram-consortium.org/) consortia websites, the Open GWAS database (https://gwas.mrcieu.ac.uk/), the GTEx consortium website (https://
gtexportal.org/home/ and the MiBioGen repository (https://mibiogen.gcc.rug.nl/). UK Biobank data are available through a procedure described at http://
www.ukbiobank.ac.uk/using-the-resource/. Individual level genetic and clinical data from BioVU cannot be shared publicly due to patient confidentiality. However,
summary statistics can be viewed in tabular form at: https://phewascatalog.org/labwas. The DGIdb and the PHAROS databases can be accessed online at https://
www.dgidb.org/ and https://pharos.nih.gov/, respectively.

We found that concordant and discordant genetic profiles differ in waist-to-hip ratio, a measure of central to peripheral
obesity, predominantly in women. Therefore, when assessing whether individuals with extreme concordant and discordant
GRS conveyed obesity profiles that are different from other obesity, we included an additional analysis were we stratified by
sex. Sex was determined by genotyping analysis; individuals whose genetic sex did not match reported sex were excluded, in
order to have results relevant to biological sex and guard against distortion of estimates due to possible sex chromosome
aneuploidies.

These and other analyses that we perfomed in UK Biobank only included individuals from European descent. This is because
our initial step to find concordant and discordant variants was done using GWAS summary statistics that were done in
European populations. European descent was determined using genotyping data.

The association of concordant and discordant GRS with laboratory measures were tested on individuals of African descent in
BioVU. This was also determined by genotyping data.

The mean age of individuals in UK Biobank when they attended the first assessment centre was 56 years, ranging between 37
to 85 years. 54% of participants are females.

To analyse the association between concordant and discordant GRS to diagnoses in BioVU we included up to 48,544
individuals of European descent. In the analyses of laboratory measures, we included 68,724 participants of European
descent and 13,661 participants of African descent. In both the proportion of females is around 51%.

UK Biobank participants were assessed between 2006 and 2010 in 22 assessment centres throughout the UK, covering a
variety of different settings to provide socioeconomic and ethnic heterogeneity and urban–rural mix. Invitations to
participate were sent via mail to potential participants identified through the National Health Service. Participants that were
included are not representative of the sampling population, as there is evidence for healthy volunteer selection bias.

Recruitment in BioVU consists of an opt-out clinical collection of patients from the Vanderbilt University Medical Center
(VUMC) in an outpatient setting. DNA is extracted from discarded blood drawn for routine clinical care. This is also not
representative of the general population of Tennessee and the United States, due to its dependence on clinical registry.

Ethics approval for the UK Biobank was obtained from the North West Centre for Research Ethics Committee. Analysis of
individual level data from UK Biobank participants in Lund University was approved by the Swedish Ethical Review Authority
(2021-0317). The BioVU project was approved by the VUMC Institutional Review Board. The analysis of individual level data
was performed in VUMC, and only summary results were shared with researchers at Lund University. Both studies conformed
to the ethical principles for medical research involving human participants outlined in the Declaration of Helsinki. All
participants provided written informed consent at enrolment.
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