45 research outputs found

    Novel mechanisms of acquired resistance to EGFR-TKI in lung cancer

    Get PDF
    International Symposium on Tumor Biology in Kanazawa & Symposium on Drug Discoverry in Academics 2014 [DATE]: January 23(Thu)-24(Fri),2014, [Place]:Kanazawa Excel Hotel Tpkyu, Kanazawa, Japan, [Organizers]:Kanazawa Association of Tumor Biologists / Cancer Research Institute, Kanazawa Universit

    Revisiting a kNN-based Image Classification System with High-capacity Storage

    Full text link
    In existing image classification systems that use deep neural networks, the knowledge needed for image classification is implicitly stored in model parameters. If users want to update this knowledge, then they need to fine-tune the model parameters. Moreover, users cannot verify the validity of inference results or evaluate the contribution of knowledge to the results. In this paper, we investigate a system that stores knowledge for image classification, such as image feature maps, labels, and original images, not in model parameters but in external high-capacity storage. Our system refers to the storage like a database when classifying input images. To increase knowledge, our system updates the database instead of fine-tuning model parameters, which avoids catastrophic forgetting in incremental learning scenarios. We revisit a kNN (k-Nearest Neighbor) classifier and employ it in our system. By analyzing the neighborhood samples referred by the kNN algorithm, we can interpret how knowledge learned in the past is used for inference results. Our system achieves 79.8% top-1 accuracy on the ImageNet dataset without fine-tuning model parameters after pretraining, and 90.8% accuracy on the Split CIFAR-100 dataset in the task incremental learning setting.Comment: 16 pages, 7 figures, 6 table

    Oncogenic fusion gene CD74-NRG1 confers cancer stem cell-like properties in lung cancer through a IGF2 autocrine/paracrine circuit

    Get PDF
    The CD74-Neuregulin1 (NRG1) fusion gene was recently identified as novel driver of invasive mucinous adenocarcinoma, a malignant form of lung cancer. However, the function of the CD74-NRG1 fusion gene in adenocarcinoma pathogenesis and the mechanisms by which it may impart protumorigenic characteristics to cancer stem cells (CSC) is still unclear. In this study, we found that the expression of the CD74-NRG1 fusion gene increased the population of lung cancer cells with CSC-like properties. CD74-NRG1 expression facilitated sphere formation not only of cancer cells, but also of nonmalignant lung epithelial cells. Using a limiting dilution assay in a xenograft model, we further show that the CD74-NRG1 fusion gene enhanced tumor initiation. Mechanistically, we found that CD74-NRG1 expression promoted the phosphorylation of ErbB2/3 and activated the PI3K/Akt/NF-κB signaling pathway. Furthermore, the expression of the secreted insulin-like growth factor 2 (IGF2) and phosphorylation of its receptor, IGF1R, were enhanced in an NF-κB-dependent manner in cells expressing CD74-NRG1. These findings suggest that CD74-NRG1-induced NF-κB activity promotes the IGF2 autocrine/paracrine circuit. Moreover, inhibition of ErbB2, PI3K, NF-κB, or IGF2 suppressed CD74-NRG1-induced tumor sphere formation. Therefore, our study provides a preclinical rationale for developing treatment approaches based on these identified pathways to suppress CSC properties that promote tumor progression and recurrence. © 2016 American Association for Cancer Research

    Single ingestion of soy β-conglycinin induces increased postprandial circulating FGF21 levels exerting beneficial health effects

    Get PDF
    Soy protein β-conglycinin has serum lipid-lowering and anti-obesity effects. We showed that single ingestion of β-conglycinin after fasting alters gene expression in mouse liver. A sharp increase in fibroblast growth factor 21 (FGF21) gene expression, which is depressed by normal feeding, resulted in increased postprandial circulating FGF21 levels along with a significant decrease in adipose tissue weights. Most increases in gene expressions, including FGF21, were targets for the activating transcription factor 4 (ATF4), but not for peroxisome proliferator-activated receptor α. Overexpression of a dominant-negative form of ATF4 significantly reduced β-conglycinin-induced increases in hepatic FGF21 gene expression. In FGF21-deficient mice, β-conglycinin effects were partially abolished. Methionine supplementation to the diet or primary hepatocyte culture medium demonstrated its importance for activating liver or hepatocyte ATF4-FGF21 signaling. Thus, dietary β-conglycinin intake can impact hepatic and systemic metabolism by increasing the postprandial circulating FGF21 levels.UTokyo Research掲載「大豆のタンパク質1回摂取で代謝を改善する因子が急増」 URI: http://www.u-tokyo.ac.jp/ja/utokyo-research/research-news/single-ingestion-of-soy-protein-improves-metabolism.htmlUTokyo Research "Single ingestion of soy protein improves metabolism" URI: http://www.u-tokyo.ac.jp/en/utokyo-research/research-news/single-ingestion-of-soy-protein-improves-metabolism.htm

    Elevated β-catenin pathway as a novel target for patients with resistance to EGF receptor targeting drugs

    Get PDF
    There is a high death rate of lung cancer patients. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in some lung adenocarcinoma patients with EGFR mutations. However, a significant number of patients show primary and acquire resistance to EGFR-TKIs. Although the Akt kinase is commonly activated due to various resistance mechanisms, the key targets of Akt remain unclear. Here, we show that the Akt-β-catenin pathway may be a common resistance mechanism. We analyzed gene expression profiles of gefitinib-resistant PC9M2 cells that were derived from gefitinib-sensitive lung cancer PC9 cells and do not have known resistance mechanisms including EGFR mutation T790M. We found increased expression of Axin, a β-catenin target gene, increased phosphorylation of Akt and GSK3, accumulation of β-catenin in the cytoplasm/nucleus in PC9M2 cells. Both knockdown of β-catenin and treatment with a β-catenin inhibitor at least partially restored gefitinib sensitivity to PC9M2 cells. Lung adenocarcinoma tissues derived from gefitinib-resistant patients displayed a tendency to accumulate β-catenin in the cytoplasm. We provide a rationale for combination therapy that includes targeting of the Akt-β-catenin pathway to improve the efficacy of EGFR-TKIs

    Identification of Carnitine Transporter CT1 Binding Protein Lin-7 in Nervous System

    Get PDF
    _L-Carnitine is an essential component of mitochondrial fatty acid b-oxidation in the muscle and may control the acetyl moiety levels in the brain for acetylcholine synthesis. Carnitine transporter 1(CT1)is the high affinity _L-carnitine transporter whose localization was observed in the kidney, testis, liver, skeletal muscle and brain. To clarify the molecular mechanism of carnitine transport, we sought to find the interacting protein that may be related to the transport function of CT1. Using the intracellular C-terminal region of rat CT1 containing PDZ(PSD95/DLG/ZO-1)motif as bait, we performed the yeast two-hybrid screening against rat brain cDNA library. Thirty two positive clones were obtained from the 2.7×10^7 clones screened. One of them was PDZ domain-containing protein Lin-7. We found that Lin-7 interacts specifically with C-termini of CT1:deletion and mutation of the CT1 C-terminal PDZ-motif abolished the interaction with Lin-7 in the yeast two-hybrid assay. In addition, a PDZ domain within Lin-7 associates with the CT1 C-terminal. The association of CT1 with Lin-7 enhanced _L-carnitine transport activities in HEK293 cells although there is no statistical significance. Coexpression of Lin-7 and CT1 is identified in motor neurons of the spinal cord ventral horn together with Lin-2, a binding partner of Lin-7 known to assemble proteins involved in synaptic vesicle exocytosis and synaptic junctions. Therefore, Lin-7 interacts with CT1 and may regulate their subcellular distribution or function in central nervous system

    Happiness around the world: A combined etic-emic approach across 63 countries.

    Get PDF
    What does it mean to be happy? The vast majority of cross-cultural studies on happiness have employed a Western-origin, or "WEIRD" measure of happiness that conceptualizes it as a self-centered (or "independent"), high-arousal emotion. However, research from Eastern cultures, particularly Japan, conceptualizes happiness as including an interpersonal aspect emphasizing harmony and connectedness to others. Following a combined emic-etic approach (Cheung, van de Vijver & Leong, 2011), we assessed the cross-cultural applicability of a measure of independent happiness developed in the US (Subjective Happiness Scale; Lyubomirsky & Lepper, 1999) and a measure of interdependent happiness developed in Japan (Interdependent Happiness Scale; Hitokoto & Uchida, 2015), with data from 63 countries representing 7 sociocultural regions. Results indicate that the schema of independent happiness was more coherent in more WEIRD countries. In contrast, the coherence of interdependent happiness was unrelated to a country's "WEIRD-ness." Reliabilities of both happiness measures were lowest in African and Middle Eastern countries, suggesting these two conceptualizations of happiness may not be globally comprehensive. Overall, while the two measures had many similar correlates and properties, the self-focused concept of independent happiness is "WEIRD-er" than interdependent happiness, suggesting cross-cultural researchers should attend to both conceptualizations

    Novel mechanisms of acquired resistance to EGFR-TKI in lung cancer

    No full text

    肺腺癌における新規イレッサ耐性獲得メカニズムの解明

    Get PDF
    金沢大学がん進展制御研究所イレッサ(ゲフィチニブ)はEGFRに変異をもつ肺腺癌の患者に対して奏功率が非常に高いが、数年以内に再発してしまうことが深刻な問題となっている。我々はイレッサ耐性のメカニズムを解明するために、肺腺癌由来PC9細胞からイレッサ耐性株PC9M2樹立した。このPC9M2細胞を解析した結果、βカテニンシグナルが亢進していることが分かり、βカテニンの活性阻害によってPC9M2株にイレッサ感受性が回復することを証明した。さらに肺腺癌患者の組織においても、βカテニンの活性が高い患者ではイレッサの感受性が低いことが明らかになり、βカテニンの活性がイレッサの感受性や獲得耐性に関与する可能性が示唆された。Although Iressa (gefitinib) were greatly effective in lung adenocarcinoma patients harboring EGFR mutations, these patients ultimately have acquired resistance to gefitinib. To explore novel molecular mechanisms for gefitinib-resistance, we established the gefitinib-resistant PC9M2 cells that were spontaneously derived from gefitinib-sensitive PC9. Microarray analysis revealed that β-catenin-related genes were upregulated in PC9M2 cells compared with PC9 cells. We next demonstrated that the downregulation of β-catenin partially restored the sensitivity to gefitinib in PC9M2 cells. Using the tissues from lung cancer patients harbored EGFR mutation, we showed that activation of β-catenin was related with gefitinib sensitivity in patient’s samples, suggesting that enhanced β-catenin activation is associated with primary and acquired resistance to gefitinib. Targeting β-catenin pathway may be useful for overcoming the resistance to gefitinib.研究課題/領域番号:25830111, 研究期間(年度):2013-04-01 – 2015-03-3
    corecore