3 research outputs found

    Joint searches for gravitational waves and high-energy neutrinos

    No full text
    Many of the astrophysical sources and violent phenomena observed in our Universe are potential joint emitters of gravitational waves and high-energy cosmic radiation, in the form of photons, hadrons, and also neutrinos. This has triggered a collaborative analysis project between gravitational wave detectors and high-energy neutrino telescopes. In this article, we review some of the motivations for having pursuing science jointly and present the effort’s status

    Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors

    Get PDF
    International audienceWe present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters, and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our Galaxy. These yield a likely coalescence rate of 100 per Myr per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 per Myr per MWEG to 1000 per Myr per MWEG. We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our Advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 0.0002 and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year

    Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1

    Get PDF
    We report the results of the first search for gravitational waves from compact binary coalescence using data from the LIGO and Virgo detectors. Five months of data were collected during the concurrent S5 (LIGO) and VSR1 (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Msun. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7x10^-3, 2.2x10^-3 and 4.4x10^-4 yr^-1 L_10^-1 respectively, where L_10 is 10^10 times the blue solar luminosity. These upper limits are compared with astrophysical expectations
    corecore