4,880 research outputs found

    Metrics and isospectral partners for the most generic cubic PT-symmetric non-Hermitian Hamiltonian

    Get PDF
    We investigate properties of the most general PT-symmetric non-Hermitian Hamiltonian of cubic order in the annihilation and creation operators as a ten parameter family. For various choices of the parameters we systematically construct an exact expression for a metric operator and an isospectral Hermitian counterpart in the same similarity class by exploiting the isomorphism between operator and Moyal products. We elaborate on the subtleties of this approach. For special choices of the ten parameters the Hamiltonian reduces to various models previously studied, such as to the complex cubic potential, the so-called Swanson Hamiltonian or the transformed version of the from below unbounded quartic -x^4-potential. In addition, it also reduces to various models not considered in the present context, namely the single site lattice Reggeon model and a transformed version of the massive sextic x^6-potential, which plays an important role as a toy modelto identify theories with vanishing cosmological constant.Comment: 21 page

    Modeling the input history of programs for improved instruction-memory performance

    Full text link
    When a program is loaded into memory for execution, the relative position of its basic blocks is crucial, since loading basic blocks that are unlikely to be executed first places them high in the instruction-memory hierarchy only to be dislodged as the execution goes on. In this paper we study the use of Bayesian networks as models of the input history of a program. The main point is the creation of a probabilistic model that persists as the program is run on different inputs and at each new input refines its own parameters in order to reflect the program's input history more accurately. As the model is thus tuned, it causes basic blocks to be reordered so that, upon arrival of the next input for execution, loading the basic blocks into memory automatically takes into account the input history of the program. We report on extensive experiments, whose results demonstrate the efficacy of the overall approach in progressively lowering the execution times of a program on identical inputs placed randomly in a sequence of varied inputs. We provide results on selected SPEC CINT2000 programs and also evaluate our approach as compared to the gcc level-3 optimization and to Pettis-Hansen reordering

    Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal

    Get PDF
    Global climate change is likely to constrain low latitude range edges across many taxa and habitats. Such is the case for NE Atlantic marine macroalgal forests, important ecosystems whose main structuring species is the annual kelp Saccorhiza polyschides. We coupled ecological niche modelling with simulations of potential dispersal and delayed development stages to infer the major forces shaping range edges and to predict their dynamics. Models indicated that the southern limit is set by high winter temperatures above the physiological tolerance of overwintering microscopic stages and reduced upwelling during recruitment. The best range predictions were achieved assuming low spatial dispersal (5 km) and delayed stages up to two years (temporal dispersal). Reconstructing distributions through time indicated losses of similar to 30% from 1986 to 2014, restricting S. polyschides to upwelling regions at the southern edge. Future predictions further restrict populations to a unique refugium in northwestern Iberia. Losses were dependent on the emissions scenario, with the most drastic one shifting similar to 38% of the current distribution by 2100. Such distributional changes might not be rescued by dispersal in space or time (as shown for the recent past) and are expected to drive major biodiversity loss and changes in ecosystem functioning.Electricity of Portugal (Fundo EDP para a Biodiversidade); FCT - Portuguese Science Foundation [PTDC/MAR-EST/6053/2014, EXTANT-EXCL/AAG-GLO/0661/2012, SFRH/BPD/111003/2015

    Local roughness exponent in the nonlinear molecular-beam-epitaxy universality class in one-dimension

    Get PDF
    We report local roughness exponents, αloc\alpha_{\text{loc}}, for three interface growth models in one dimension which are believed to belong the non-linear molecular-beam-epitaxy (nMBE) universality class represented by the Villain-Lais-Das Sarma (VLDS) stochastic equation. We applied an optimum detrended fluctuation analysis (ODFA) [Luis et al., Phys. Rev. E 95, 042801 (2017)] and compared the outcomes with standard detrending methods. We observe in all investigated models that ODFA outperforms the standard methods providing exponents in the narrow interval αloc∈[0.96,0.98]\alpha_{\text{loc}}\in[0.96,0.98] consistent with renormalization group predictions for the VLDS equation. In particular, these exponent values are calculated for the Clarke-Vvdensky and Das Sarma-Tamborenea models characterized by very strong corrections to the scaling, for which large deviations of these values had been reported. Our results strongly support the absence of anomalous scaling in the nMBE universality class and the existence of corrections in the form αloc=1−ϵ\alpha_{\text{loc}}=1-\epsilon of the one-loop renormalization group analysis of the VLDS equation

    Non-Hermitian Hamiltonians in Field Theory

    Get PDF
    This thesis is centred around the role of non-Hermitian Hamiltonians in Physics both at the quantum and classical levels. In our investigations of two-level models we demonstrate [1] the phenomenon of fast transitions developed in the PT -symmetric quantum brachistochrone problem may in fact be attributed to the non-Hermiticity of evolution operator used, rather than to its invariance under PT operation. Transition probabilities are calculated for Hamiltonians which explicitly violate PT -symmetry. When it comes to Hilbert spaces of infinite dimension, starting with non-Hermitian Hamiltonians expressed as linear and quadratic combinations of the generators of the su(1; 1) Lie algebra, we construct [2] Hermitian partners in the same similarity class. Alongside, metrics with respect to which the original Hamiltonians are Hermitian are also constructed, allowing to assign meaning to a large class of non-Hermitian Hamiltonians possessing real spectra. The finding of exact results to establish the physical acceptability of other non-Hermitian models may be pursued by other means, especially if the system of interest cannot be expressed in terms of Lie algebraic elements. We also employ [3] a representation of the canonical commutation relations for position and momentum operators in terms of real-valued functions and a noncommutative product rule of differential form. Besides exact solutions, we also compute in a perturbative fashion metrics and isospectral partners for systems of physical interest. Classically, our efforts were concentrated on integrable models presenting PT - symmetry. Because the latter can also establish the reality of energies in classical systems described by Hamiltonian functions, we search for new families of nonlinear differential equations for which the presence of hidden symmetries allows one to assemble exact solutions. We use [4] the Painleve test to check whether deformations of integrable systems preserve integrability. Moreover we compare [5] integrable deformed models, which are thus likely to possess soliton solutions, to a broader class of systems presenting compacton solutions. Finally we study [6] the pole structure of certain real valued nonlinear integrable systems and establish that they behave as interacting particles whose motion can be extended to the complex plane in a PT -symmetric way

    Impurity and boundary effects in one and two-dimensional inhomogeneous Heisenberg antiferromagnets

    Full text link
    We calculate the ground-state energy of one and two-dimensional spatially inhomogeneous antiferromagnetic Heisenberg models for spins 1/2, 1, 3/2 and 2. Our calculations become possible as a consequence of the recent formulation of density-functional theory for Heisenberg models. The method is similar to spin-density-functional theory, but employs a local-density-type approximation designed specifically for the Heisenberg model, allowing us to explore parameter regimes that are hard to access by traditional methods, and to consider complications that are important specifically for nanomagnetic devices, such as the effects of impurities, finite-size, and boundary geometry, in chains, ladders, and higher-dimensional systems.Comment: 4 pages, 4 figures, accepted by Phys. Rev.

    Avaliação da técnica de eletroosmose na purificação de água em escala laboratorial.

    Get PDF
    bitstream/item/26305/1/CT34-2000.pd
    • …
    corecore