65 research outputs found

    An Iron Bis(carbene) Catalyst for Low Overpotential CO2 Electroreduction to CO: Mechanistic Insights from Kinetic Zone Diagrams, Spectroscopy, and Theory

    Get PDF
    A common challenge in molecular electrocatalysis is the relationship between maximum activity and the overpotential required to reach that rate, with faster catalysts incurring higher overpotentials. This work follows a strategy based on independent tuning of ligands in the primary coordination sphere to discover a previously unreported iron catalyst for CO2 reduction with higher activity than similar complexes while maintaining the same overpotential. Iron complexes bearing a bis-N-heterocyclic carbene ligand (methylenebis(N-methylimidazol-2-ylidene), bis-mim) and a redox active 2,2′:6′,2″-terpyridine (tpy) ligand were synthesized and found to catalyze the selective reduction of CO2 to CO at low overpotential with water as the proton source. Mechanistic studies based on kinetic zone diagrams, spectroscopy, and computation enable comparisons with a previously studied pyridyl–carbene analogue. Changing the bidentate ligand donor ability accelerates catalysis at the same overpotential and changes the nature of the turnover-limiting step of the reaction.The synthesis, voltammetry, and spectroelectrochemistry were supported as part of the Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011 (E.A.A and A.J.M.M). Jordi Benet assisted with crystallographic data collection. Brandie M. Ehrmann assisted with mass spectrometry. The mass spectrometry work was supported by the National Science Foundation under grant no. (CHE-1726291). Computational studies, flow electrolyses, and X-ray diffraction studies were supported by the European Commission for the ERC-CoG-2015-648304 project and the Spanish Ministry of Science for the project PID2019-110050RB-I00 (J.Ll.-F). S.G. thanks the EU for Horizon 2020 Marie Skłodowska-Curie Fellowship (grant no. 794119, Fe-RedOx-Cat)

    The Unusual Radio Afterglow of the Ultra-Long Gamma-Ray Burst GRB 130925A

    Get PDF
    GRB 130925A is one of the recent additions to the growing family of ultra-long gamma-ray bursts (GRBs; T90≳1000 s). While the X-ray emission of ultra-long GRBs have been studied extensively in the past, no comprehensive radio data set has been obtained so far. We report here the early discovery of an unusual radio afterglow associated with the ultra-long GRB 130925A. The radio emission peaks at low-frequencies (~7 GHz) at early times, only 2.2 days after the burst occurred. More notably, the radio spectrum at frequencies above 10 GHz exhibits a rather steep cut-off, compared to other long GRB radio afterglows. This cut-off can be explained if the emitting electrons are either mono-energetic or originate from a rather steep, dN/dE ∝ E^(−4), power-law energy distribution. An alternative electron acceleration mechanism may be required to produce such an electron energy distribution. Furthermore, the radio spectrum exhibits a secondary underlying and slowly varying component. This may hint that the radio emission we observed is comprised of emission from both a reverse and a forward shock. We discuss our results in comparison with previous works that studied the unusual X-ray spectrum of this event and discuss the implications of our findings on progenitor scenarios

    Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive T1 Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells

    Get PDF
    Mesoporous silica-coated hollow manganese oxide (HIVInO@ mSiO(2)) nanoparticles were developed as a novel T-1 magnetic resonance imaging (MRI) contrast agent. We hypothesized that the mesoporous structure of the nanopartide shell enables optimal access of water molecules to the magnetic core, and consequently, an effective longitudinal (R-1) relaxation enhancement of water protons, which value was measured to be 0.99 (mM(-1) s(-1)) at 11.7 T. Adipose-derived mesenchymal stem cells (MSCs) were efficiently labeled using electroporation, with much shorter T-1 values as compared to direct incubation without electroporation, which was also evidenced by signal enhancement on T-1-weighted MR images in vitro. Intracranial grafting of HMnO@mSiO(2)-labeled MSCs enabled serial MR monitoring of cell transplants over 14 days. These novel nanopartides may extend the arsenal of currently available nanoparticie MR contrast agents by providing positive contrast on T-1-weighted images at high magnetic field strengths.

    Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents

    Get PDF
    Funding: J.M.C., A.D.L., E.F.L., and E.A.M. were supported by a Stanford Woods Institute for the Environment—Environmental Ventures Program grant (PIs: E.A.M., A.D.L., and E.F.L.). E.A.M. was also supported by a Hellman Faculty Fellowship and a Terman Award. A.D.L., B.A.N., F.M.M., E.N.G.S., M.S.S., A.R.K., R.D., A.A., and H.N.N. were supported by a National Institutes of Health R01 grant (AI102918; PI: A.D.L.). E.A.M., A.M.S.I., and S.J.R. were supported by a National Science Foundation (NSF) Ecology and Evolution of Infectious Diseases (EEID) grant (DEB-1518681), and A.M.S.I. and S.J.R. were also supported by an NSF DEB RAPID grant (1641145). E.A.M. was also supported by a National Institute of General Medical Sciences Maximizing Investigators’ Research Award grant (R35GM133439) and an NSF and Fogarty International Center EEID grant (DEB-2011147).Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28-85% for vectors, 44-88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.Publisher PDFPeer reviewe

    IPAC Image Processing and Data Archiving for the Palomar Transient Factory

    Get PDF
    The Palomar Transient Factory (PTF) is a multiepochal robotic survey of the northern sky that acquires data for the scientific study of transient and variable astrophysical phenomena. The camera and telescope provide for wide-field imaging in optical bands. In the five years of operation since first light on 2008 December 13, images taken with Mould-R and SDSS-g′ camera filters have been routinely acquired on a nightly basis (weather permitting), and two different Hα filters were installed in 2011 May (656 and 663 nm). The PTF image-processing and data-archival program at the Infrared Processing and Analysis Center (IPAC) is tailored to receive and reduce the data, and, from it, generate and preserve astrometrically and photometrically calibrated images, extracted source catalogs, and co-added reference images. Relational databases have been deployed to track these products in operations and the data archive. The fully automated system has benefited by lessons learned from past IPAC projects and comprises advantageous features that are potentially incorporable into other ground-based observatories. Both off-the-shelf and in-house software have been utilized for economy and rapid development. The PTF data archive is curated by the NASA/IPAC Infrared Science Archive (IRSA). A state-of-the-art custom Web interface has been deployed for downloading the raw images, processed images, and source catalogs from IRSA. Access to PTF data products is currently limited to an initial public data release (M81, M44, M42, SDSS Stripe 82, and the Kepler Survey Field). It is the intent of the PTF collaboration to release the full PTF data archive when sufficient funding becomes available

    Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient

    Get PDF
    We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 ± 0.1 mag hr-1) and luminous (Mg,peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (Lbol ≳ 3 × 1044 erg s-1), the short rise time (trise = 3 days in g band), and the blue colors at peak (g-r ∼ -0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (Teff ≳ 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (Mg ∼ Mr ≈ mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E γ,iso \u3c 4.9 × 10 48 erg, a limit on X-ray emission LX \u3c 1040 erg s-1, and a limit on radio emission ν Lν ≲ 1037 erg s-1. Taken together, we find that the early (\u3c 10 days) data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M⊙) at large radii (3 × 1014 cm) that was ejected in eruptive pre-explosion mass-loss episodes. The late-time (\u3e 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56

    Stratification of co-evolving genomic groups using ranked phylogenetic profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present <it>rank-BLAST</it>, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database.</p> <p>Results</p> <p>The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples.</p> <p>Conclusion</p> <p>Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples.</p

    The Death Throes of a Stripped Massive Star: An Eruptive Mass-Loss History Encoded in Pre-Explosion Emission, a Rapidly Rising Luminous Transient, and a Broad-Lined Ic Supernova SN2018gep

    Get PDF
    We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.3 mag/hr) and luminous (M_(g,peak) = −20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The rapid rise to peak bolometric luminosity and blue colors at peak (t_(rise)∼0.5-3 days, L_(bol)≳3×10^(44) erg sec^(−1), g−r = −0.3) resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T_(eff) ≳ 40,000K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M_g ∼ M_r ≈ −14mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E_(γ,iso) < 4.9×10^(48) erg, a limit on X-ray emission L_X < 10^(40) erg sec^(−1), and a limit on radio emission νL_ν ≲ 10^(37) erg sec^(−1). Taken together, we find that the data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M⊙) at large radii (3×10^(14)cm) that was ejected in eruptive pre-explosion mass-loss episodes

    The Unusual Radio Afterglow of the Ultra-Long Gamma-Ray Burst GRB 130925A

    Get PDF
    GRB 130925A is one of the recent additions to the growing family of ultra-long gamma-ray bursts (GRBs; T90 ≳1000 s). While the X-ray emission of ultra-long GRBs have been studied extensively in the past, no comprehensive radio data set has been obtained so far. We report here the early discovery of an unusual radio afterglow associated with the ultra-long GRB 130925A. The radio emission peaks at low-frequencies (∼7 GHz) at early times, only 2.2 days after the burst occurred. More notably, the radio spectrum at frequencies above 10 GHz exhibits a rather steep cut-off, compared to other long GRB radio afterglows. This cut-off can be explained if the emitting electrons are either mono-energetic or originate from a rather steep, dN/dE ∝ E-4, power-law energy distribution. An alternative electron acceleration mechanism may be required to produce such an electron energy distribution. Furthermore, the radio spectrum exhibits a secondary underlying and slowly varying component. This may hint that the radio emission we observed is comprised of emission from both a reverse and a forward shock. We discuss our results in comparison with previous works that studied the unusual X-ray spectrum of this event and discuss the implications of our findings on progenitor scenarios. © 2015. The American Astronomical Society. All rights reserved
    • …
    corecore