23 research outputs found
Diversity and bioactivity of endophytic actinobacteria associated with the roots of artemisia herba-alba asso from Algeria
The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request, while 16S rRNA data generated are available in the Genbank repository.The isolation of endophytic actinobacteria from the roots of wild populations of Artemisia herba-alba Asso, a medicinal plant collected from the arid lands of Algeria, is reported for the first time. Forty-five actinobacterial isolates were identified by molecular analysis and in vitro evaluated for antimicrobial activity and plant growth-promoting (PGP) abilities (1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, nitrogen fixation, phosphate and potassium solubilization, ammonia, and siderophores production). The phylogenetic relationships based on 16S rRNA gene sequences show that the genus Nocardioides (n = 23) was dominant in the sampled localities. The remaining actinobacterial isolates were identified as Promicromonospora (n = 11), Streptomyces (n = 6), Micromonopora (n = 3), and Saccharothrix (n = 2). Only six (13.33%) strains (five Streptomyces and one Saccharothrix species) were antagonistic in vitro against at least one or more indicator microorganisms. The antimicrobial activity of actinobacterial strains targeted mainly Gram-positive bacteria. The results demonstrate that more than 73% of the isolated strains had ACC deaminase activity, could fix atmospheric nitrogen and were producers of ammonia and siderophores. However, only one (2.22%) strain named Saccharothrix sp. BT79 could solubilize phosphorus and potassium. Overall, many strains exhibited a broad spectrum of PGP abilities. Thus, A. herba-alba provides a source of endophytic actinobacteria that should be explored for their potential biological activities.Ministry of Higher Education and Scientific ResearchCurrent Microbiolog
Biological activities of Streptomyces sp. Bts40 isolated from the rhizosphere of Artemisia herba-alba Asso
Actinobacteria isolated from the rhizosphere of plants are of interest as they produce a diverse range of molecules, such as antibiotics and enzymes. This study investigates the antibacterial activity, plant growth-promoting (PGP) abilities as well as the production of extracellular enzymes by the actinobacterial strain BTS40. This strain was isolated from the rhizospheric soil of the medicinal plant Artemisia herba-alba Asso that was naturally grown in a semi-arid environment. Morphological characteristics showed that the strain BTS40 belongs to the genus Streptomyces. Analysis of BTS40’s 16S rRNA gene sequence showed 99.45% similarity to Streptomyces alboniger NRRL B-1832T, in the EzTaxon database. This actinobacterium showed only antibacterial activity against Gram-positive bacteria. The strain also showed potential multiple traits for plant growth promotion and hydrolysis of enzymes. Hence, this study reveals that strain BTS40 has multiple PGP traits and produces many extracellular hydrolytic enzymes
Lichenological exploration of Algeria: historical overview and annotated bibliography, 1799-2013
yesDespite more than two centuries of almost uninterrupted surveys and studies of Algerian lichenology, the history and lichen diversity of Algeria are still poorly understood. During the preparation of a forthcoming checklist of Algerian lichens it was considered necessary to provide the present historical overview of lichenological exploration of the country from 1799 to 2013, supported by a reasonably comprehensive annotated bibliography of 171 titles
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Biological activities of Streptomyces sp. BTS40 isolated from the rhizosphere of Artemisia herba-alba Asso
Actinobacteria isolated from the rhizosphere of plants are of interest as they produce a diverse range of molecules, such as antibiotics and enzymes. This study investigates the antibacterial activity, plant growth-promoting (PGP) abilities as well as the production of extracellular enzymes by the actinobacterial strain BTS40. This strain was isolated from the rhizospheric soil of the medicinal plant Artemisia herba-alba Asso that was naturally grown in a semi-arid environment. Morphological characteristics showed that the strain BTS40 belongs to the genus Streptomyces. Analysis of BTS40’s 16S rRNA gene sequence showed 99.45% similarity to Streptomyces alboniger NRRL B-1832T, in the EzTaxon database. This actinobacterium showed only antibacterial activity against Gram-positive bacteria. The strain also showed potential multiple traits for plant growth promotion and hydrolysis of enzymes. Hence, this study reveals that strain BTS40 has multiple PGP traits and produces many extracellular hydrolytic enzymes
Streptomyces species from the rhizosphere of the medicinal plant Artemisia herba-alba Asso: screening for biological activities
This work aims to study cultivable actinobacterial isolated from the rhizosphere soil of Artemisia herba-alba Asso; an important component of the Mediterranean dry steppe flora. The isolates functional attributes with respect to antifungal, in vitro growth-promotion properties and enzymatic capacities, were studied. A total of eleven cultivable actinobacterial strains were isolated and identified as Streptomyces species by 16S rRNA gene sequencing. The eleven Streptomyces strains were positive for the production of almost all the hydrolytic enzymes tested, while the majority had ACC deaminase activity (6 strains) and exhibited ammonia (7 strains), siderophores production (9 strains) and phosphate solubilization (6 strains). Two out of the eleven strains named Streptomyces sp. BKS30 and BKS40 showed antifungal activities. One promising Streptomyces sp. strain BKS30 that was in-depth characterized morphologically and biochemically was further tested for its antifungal activity for the filtrate and the butanolic extract against nine target-fungi as well as for its antioxidant activity by DPPH and ABST tests. The obtained results demonstrate that Streptomyces species isolated from the rhizosphere of Artemisia herba-alba Asso have the potential for different biological activities including antifungal and antioxidant activities particularly for strain BKS30
High Salt Levels Reduced Dissimilarities in Root-Associated Microbiomes of Two Barley Genotypes
Plants harbor in and at their roots bacterial microbiomes that contribute to their health and fitness. The microbiome composition is controlled by the environment and plant genotype. Previously, it was shown that the plant genotype-dependent dissimilarity of root microbiome composition of different species becomes smaller under drought stress. However, it remains unknown whether this reduced plant genotype-dependent effect is a specific response to drought stress or a more generic response to abiotic stress. To test this, we studied the effect of salt stress on two distinct barley (Hordeum vulgare L.) genotypes: the reference cultivar Golden Promise and the Algerian landrace AB. As inoculum, we used soil from salinized and degraded farmland on which barley was cultivated. Controlled laboratory experiments showed that plants inoculated with this soil displayed growth stimulation under high salt stress (200 mM) in a plant genotype-independent manner, whereas the landrace AB also showed significant growth stimulation at low salt concentrations. Subsequent analysis of the root microbiomes revealed a reduced dissimilarity of the bacterial communities of the two barley genotypes in response to high salt, especially in the endophytic compartment. High salt level did not reduce α-diversity (richness) in the endophytic compartment of both plant genotypes but was associated with an increased number of shared strains that respond positively to high salt. Among these, Pseudomonas spp. were most abundant. These findings suggest that the plant genotype-dependent microbiome composition is altered generically by abiotic stress.[Formula: see text
Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database
Background: The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p < 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p < 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013
Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study
International audienceBackground: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/ hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH 2 O, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmH 2 O, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmH 2 O, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Conclusions: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury