34 research outputs found

    Region-based analysis in genome-wide association study of Framingham Heart Study blood lipid phenotypes

    Get PDF
    Due to the high-dimensionality of single-nucleotide polymorphism (SNP) data, region-based methods are an attractive approach to the identification of genetic variation associated with a certain phenotype. A common approach to defining regions is to identify the most significant SNPs from a single-SNP association analysis, and then use a gene database to obtain a list of genes proximal to the identified SNPs. Alternatively, regions may be defined statistically, via a scan statistic. After categorizing SNPs as significant or not (based on the single-SNP association p-values), a scan statistic is useful to identify regions that contain more significant SNPs than expected by chance. Important features of this method are that regions are defined statistically, so that there is no dependence on a gene database, and both gene and inter-gene regions can be detected. In the analysis of blood-lipid phenotypes from the Framingham Heart Study (FHS), we compared statistically defined regions with those formed from the top single SNP tests. Although we missed a number of single SNPs, we also identified many additional regions not found as SNP-database regions and avoided issues related to region definition. In addition, analyses of candidate genes for high-density lipoprotein, low-density lipoprotein, and triglyceride levels suggested that associations detected with region-based statistics are also found using the scan statistic approach

    Stochastic search and joint fine-mapping increases accuracy and identifies previously unreported associations in immune-mediated diseases

    Get PDF
    Abstract: Thousands of genetic variants are associated with human disease risk, but linkage disequilibrium (LD) hinders fine-mapping the causal variants. Both lack of power, and joint tagging of two or more distinct causal variants by a single non-causal SNP, lead to inaccuracies in fine-mapping, with stochastic search more robust than stepwise. We develop a computationally efficient multinomial fine-mapping (MFM) approach that borrows information between diseases in a Bayesian framework. We show that MFM has greater accuracy than single disease analysis when shared causal variants exist, and negligible loss of precision otherwise. MFM analysis of six immune-mediated diseases reveals causal variants undetected in individual disease analysis, including in IL2RA where we confirm functional effects of multiple causal variants using allele-specific expression in sorted CD4+ T cells from genotype-selected individuals. MFM has the potential to increase fine-mapping resolution in related diseases enabling the identification of associated cellular and molecular phenotypes

    A Bayesian Approach to the Overlap Analysis of Epidemiologically Linked Traits.

    Get PDF
    Diseases often cooccur in individuals more often than expected by chance, and may be explained by shared underlying genetic etiology. A common approach to genetic overlap analyses is to use summary genome-wide association study data to identify single-nucleotide polymorphisms (SNPs) that are associated with multiple traits at a selected P-value threshold. However, P-values do not account for differences in power, whereas Bayes' factors (BFs) do, and may be approximated using summary statistics. We use simulation studies to compare the power of frequentist and Bayesian approaches with overlap analyses, and to decide on appropriate thresholds for comparison between the two methods. It is empirically illustrated that BFs have the advantage over P-values of a decreasing type I error rate as study size increases for single-disease associations. Consequently, the overlap analysis of traits from different-sized studies encounters issues in fair P-value threshold selection, whereas BFs are adjusted automatically. Extensive simulations show that Bayesian overlap analyses tend to have higher power than those that assess association strength with P-values, particularly in low-power scenarios. Calibration tables between BFs and P-values are provided for a range of sample sizes, as well as an approximation approach for sample sizes that are not in the calibration table. Although P-values are sometimes thought more intuitive, these tables assist in removing the opaqueness of Bayesian thresholds and may also be used in the selection of a BF threshold to meet a certain type I error rate. An application of our methods is used to identify variants associated with both obesity and osteoarthritis

    A two-stage inter-rater approach for enrichment testing of variants associated with multiple traits

    Get PDF
    Shared genetic aetiology may explain the co-occurrence of diseases in individuals more often than expected by chance. On identifying associated variants shared between two traits, one objective is to determine whether such overlap may be explained by specific genomic characteristics (eg, functional annotation). In clinical studies, inter-rater agreement approaches assess concordance among expert opinions on the presence/absence of a complex disease for each subject. We adapt a two-stage inter-rater agreement model to the genetic association setting to identify features predictive of overlap variants, while accounting for their marginal trait associations. The resulting corrected overlap and marginal enrichment test (COMET) also assesses enrichment at the individual trait level. Multiple categories may be tested simultaneously and the method is computationally efficient, not requiring permutations to assess significance. In an extensive simulation study, COMET identifies features predictive of enrichment with high power and has well-calibrated type I error. In contrast, testing for overlap with a single-trait enrichment test has inflated type I error. COMET is applied to three glycaemic traits using a set of functional annotation categories as predictors, followed by further analyses that focus on tissue-specific regulatory variants. The results support previous findings that regulatory variants in pancreatic islets are enriched for fasting glucose-associated variants, and give insight into differences/similarities between characteristics of variants associated with glycaemic traits. Also, despite regulatory variants in pancreatic islets being enriched for variants that are marginally associated with fasting glucose and fasting insulin, there is no enrichment of shared variants between the traits

    Trans-ethnic study design approaches for fine-mapping.

    Get PDF
    Studies that traverse ancestrally diverse populations may increase power to detect novel loci and improve fine-mapping resolution of causal variants by leveraging linkage disequilibrium differences between ethnic groups. The inclusion of African ancestry samples may yield further improvements because of low linkage disequilibrium and high genetic heterogeneity. We investigate the fine-mapping resolution of trans-ethnic fixed-effects meta-analysis for five type II diabetes loci, under various settings of ancestral composition (European, East Asian, African), allelic heterogeneity, and causal variant minor allele frequency. In particular, three settings of ancestral composition were compared: (1) single ancestry (European), (2) moderate ancestral diversity (European and East Asian), and (3) high ancestral diversity (European, East Asian, and African). Our simulations suggest that the European/Asian and European ancestry-only meta-analyses consistently attain similar fine-mapping resolution. The inclusion of African ancestry samples in the meta-analysis leads to a marked improvement in fine-mapping resolution

    Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms.

    Get PDF
    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci

    Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms

    Get PDF
    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    Get PDF
    Tiina Paunio on työryhmän UK10K jäsen.The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.Peer reviewe
    corecore