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Supplementary Note 1: LD structures corresponding to joint tag-

ging

We consider 3 SNPs. SNPs 1 and 2 are causal and SNP 3 is not causal. The LD correlation matrix

between the SNPs is

Σ =


1 r12 r1

r12 1 r2

r1 r2 1


Because Σ is a correlation matrix, it must be positive definite, which means r12, r1, r2 must satisfy

−2 ∗ r1 ∗ r2 ∗ r12 + r21 + r22 + r212 ≤ 1 (1)

so that r12, r1, r2 are constrained to lie within an ellipse. If the true expected Z scores from a

joint model against all SNPs is ZJ = (ζ1, ζ2, 0)′, then the expected marginal Z scores are ZM '

ΣZJ = (z1, z2, z3)
′ where zi = E

(
βi
σi

)
, and βi, σi are the log odds ratio and its standard error,

respectively, for SNP i. The region within the ellipse that correspond to joint tagging is defined by

the intersection of

z3 ' |ζ1r1 + ζ2r2| > |ζ1 + ζ2r12| ' z1

z3 ' |ζ1r1 + ζ2r2| > |ζ2 + ζ1r12| ' z2

There are then 5 unknown parameters which control whether tagging is expected. However, we can

make inference under some simplified expectations. For example, if we assume that the two causal

SNPs have equal effect sizes measured by Z scores, ie ζ1 = ζ2 ⇒ z1 = z2, then this reduces to

|r1 + r2| > |1 + r12|. (2)
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Supplementary Figure 1: Correlations between 2 causal SNPs and a potential joint tag
SNP. The 3-way correlations between 2 causal SNPs (r12, z axis) and each causal SNP and a
potential joint tag (r1, and r2, x and y axes respectively) lie in a simplex. a Assuming ζ1 = ζ2,
then points within this simplex may be coloured according to whether joint tagging is expected
(red) or not (yellow) if both causal variants have equal effect sizes. b, c, d show planes through
this simplex when the causal variants are uncorrelated (r12 = 0), positively correlated (r12 = 0.5)
and negatively correlated (r12 = −0.5) respectively.

Equation (2) thus defines the subset of points within the simplex (within which these 3-way corre-

lations must lie) which correspond to joint tagging under the assumption ζ1 = ζ2. In particular,

note that this subset is non-empty - ie joint tagging is possible - even for unlinked causal variants,

since setting r12 = 0 joint tagging requires a solution to the simultaneous inequalities derived from

(1), (2):

|r1 + r2| > 1

r21 + r22 ≤ 1

(3)

and many such solutions exist, e.g. r1 = r2 > 0.5 (see Supplementary Figure 1).
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Alternatively, it may be more realistic to assume that the SNPs have equal odds ratios, β∗.

Noting that σ2i ∝ fi(1− fi) where fi is the MAF of SNP i, we have joint tagging when

z3 '

∣∣∣∣∣ β∗√
f1(1− f1)

r1 +
β∗√

f2(1− f2)
r2

∣∣∣∣∣ >
∣∣∣∣∣ β∗√

f1(1− f1)
+

β∗√
f2(1− f2)

r12

∣∣∣∣∣ ' z1
z3 '

∣∣∣∣∣ β∗√
f1(1− f1)

r1 +
β∗√

f2(1− f2)
r2

∣∣∣∣∣ >
∣∣∣∣∣ β∗√

f1(1− f1)
r12 +

β∗√
f2(1− f2)

∣∣∣∣∣ ' z2

which reduces to

z3 '

∣∣∣∣∣ r1√
f1(1− f1)

+
r2√

f2(1− f2)

∣∣∣∣∣ >
∣∣∣∣∣ 1√

f1(1− f1)
+

r12√
f2(1− f2)

∣∣∣∣∣ ' z1
z3 '

∣∣∣∣∣ r1√
f1(1− f1)

+
r2√

f2(1− f2)

∣∣∣∣∣ >
∣∣∣∣∣ r12√

f1(1− f1)
+

1√
f2(1− f2)

∣∣∣∣∣ ' z2
(4)

Decisions on whether individual observations corresponded to joint tagging in Figure 2b–c were

made on the basis of equations (3)-(4).

Supplementary Note 2: Statistical inference of joint versus tag mod-

els

In this section, we consider how statistical inference will perform, when comparing joint models to

tag models, by evaluating their likelihood ratio and the Bayesian Information Criterion (BIC). Let

Zo be the observed Z scores for the joint 3-SNP model, with Zo ∼ N(ZM ,Σ), ZM = ΣZJ .

H0 :ZJ = z̃J = (0, 0, ζ̃)′

H1 :ZJ = zj = (ζ1, ζ2, 0)′
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For simplicity, we assume the MLE of the effect sizes under the appropriate hypothesis are their

true values, i.e. ζ̂i = ζi, i = 1, 2, assuming H1, and
ˆ̃
ζ = r1ζ1 +r2ζ2, assuming H0. We are interested

in evaluating the plausibility of situations in which we would erroneously infer H0 when H1 is true.

Assuming a likelihood ratio is used for comparison, this would correspond to

`(ZJ = (ζ1, ζ2, 0)′|zo)
`(ZJ = (0, 0, ζ̃)′|zo)

< 1,

where the left-hand side is the likelihood ratio of observing Z scores (zo1, z
o
2, z

o
3) under H1 compared

to H0. Since Zo is Normally distributed, the inequality becomes

(2π|Σ|)−1/2 exp
(
−1

2(zo − zm)′Σ−1(zo − zm)
)

(2π|Σ|)−1/2 exp
(
−1

2(zo − z̃m)′Σ−1(zo − z̃m)
) < 1,

where zm = ΣzJ and z̃m = Σz̃J . Simplifying, we obtain

z′mΣ−1zm − z̃′mΣ−1z̃m − 2z′oΣ
−1(zm − z̃m) > 0

⇒ z′JΣzJ − z̃′JΣz̃J − 2z′o(zJ − z̃J) > 0,

where we used the fact that Σ is symmetric and expressions for zm and z̃m. Substituting zJ , z̃J

and Σ we obtain

2(ζ̃zo3 − ζ1zo1 − ζ2zo2) + ζ21 + ζ22 − ζ̃2 + 2ζ1ζ2r12 > 0. (5)

We need to determine whether this condition can be satisfied, and if so, what is the probability of

it being satisfied if H1 is true.

The relative plausibility of the two models can also be assessed using Bayesian information

criterion (BIC). Recall that the BIC of a model with k parameters and based on n sample points

is k ln(n) − 2ˆ̀, where ˆ̀ is the maximized log-likelihood of the model. Hence, when using BIC, in

order for the model under which SNP 3 is causal to be preferred to the model under which SNPs

1 and 2 are causal, the following has to hold

ln(n)− 2ˆ̀(ZJ = (0, 0, ζ̃)′|zo) < 2 ln(n)− 2ˆ̀(ZJ = (ζ1, ζ2, 0)′|zo).
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This gives the following condition

2(ζ̃zo3 − ζ1zo1 − ζ2zo2) + ζ21 + ζ22 − ζ̃2 + 2ζ1ζ2r12 > − ln(n). (6)

We now proceed to evaluate probabilities of conditions (5) and (6). We assume ζ1 = ζ2 := ζ and

ζ̃ = ζ(r1 + r2). Hence, ZJ = (ζ, ζ, 0)′ and we have

Zo ∼ N
([

ζ(1+r12)
ζ(1+r12)
ζ(r1+r2)

]
,Σ

)
,

Set

W := ζ̃zo3 − ζ1zo1 − ζ2zo2

and note that W is Normally distributed and (5) becomes

2W − ζ2(r1 + r2)
2 + 2ζ2(1 + r12) > 0, (7)

with

E(W ) = ζ2(r1 + r2)
2 − 2ζ2(1 + r12) := −σ2W

Var(W ) = −ζ2(r1 + r2)
2 + 2ζ2(1 + r12) = σ2W .

Condition Var(W ) > 0 evaluates to

r1 + r2 <
√

2(1 + r12). (8)

We can now evaluate the probability of event (7), P (ζ, r1, r2, r12), as

P (ζ, r1, r2, r12) = P(2W + σ2W > 0) = 1− Φ(1/2σW )

= 1− Φ

(
1

2
|ζ|
√

2(1 + r12)− (r1 + r2)2
)
.

It follows that the probability of choosing H0 when H1 is in fact true, is always less than 0.5.
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Additionally this probability decreases with the absolute value of effect size ζ and correlation

between SNPs 1 and 2, r12, and increases with the squared sum of correlations of causal SNPs 1

and 2 with the tagging SNP 3 (see Supplementary Figure 2).

Similarly, the probability of the BIC condition (6), P (ζ, r1, r2, r12, n), can be calculated to be

P (ζ, r1, r2, r12, n) = P(2W + σ2W > − lnn) = 1− Φ

(
1

2

(
σW −

1

σM
ln(n)

))
.

Again, the probability of choosing a SNP 3 model, when SNPs 1 and 2 are causal, is non-zero but

is no longer bounded above. The general trends remain the same—P (ζ, r1, r2, r12, n) increases with

(r1+r2)
2 and decreases with ζ and r12 (although the pool of admissible values (r1, r2) increases with

r12). Additionally P (ζ, r1, r2, r12, n) slightly increases with the sample size n (see Supplementary

Figure 3).

2.1 SNP 3 is causal

If H0 were in fact true, we would be much less likely to erroneously infer H1, as shown below.

Assume ζ1 = ζ̃r1 and ζ2 = ζ̃r2. We have

Zo ∼ N

([
ζ̃r1
ζ̃r1
ζ̃

]
,Σ

)
.

Inequality (5) becomes

2W − ζ̃2(1− r21 − r22 − 2r1r2r12) > 0, (9)

with

E(W ) = ζ̃2(1− r21 − r22)

Var(W ) = ζ̃2(1− r21 − r22 + 2r1r2r12) = σ2W .

Once again condition Var(W ) > 0 yields

1 + 2r1r2r12 > r21 + r22 (10)
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Supplementary Figure 2: Probability of choosing a SNP 3 model, when SNPs 1 and 2
are causal, under the likelihood ratio setup. Probability of choosing a model under which
SNP 3 is causal, when SNPs 1 and 2 are actually causal, P (ζ, r1, r2, r12), under likelihood ratio
setup for varying values of (r1 + r2)

2, squared sum of correlations of SNPs 1 and 2 with SNP 3,
different effect sizes ζ, and correlation r12 between SNPs 1 and 2 (side panels). Note that there
are no combinations of r1 and r2 satisfying conditions (1) and (8) when r12 = −1. P (ζ, r1, r2, r12)
is bounded above by 0.5 and remains very small for ζ > 3 until (r1 + r2)

2 is close to its maximum
value.
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Supplementary Figure 3: Probability of choosing a SNP 3 model, when SNPs 1 and 2
are causal, under the BIC setup. Probability of choosing a model under which SNP 3 is
causal, when SNPs 1 and 2 are actually causal, P (ζ, r1, r2, r12, n), under BIC setup for varying
values of (r1 + r2)

2, squared sum of correlations of SNPs 1 and 2 with SNP 3, different effect
sizes ζ, correlation r12 between SNPs 1 and 2 (side panels), and sample size n (top panels). Note
that there are no combinations of r1 and r2 satisfying conditions (1) and (8) when r12 = −1.
P (ζ, r1, r2, r12, n) remains very small for ζ > 3 until (r1 + r2)

2 is close to its maximum value.

9



zeta.0 zeta.1 zeta.2 zeta.3 zeta.4 zeta.5 zeta.6 zeta.7 zeta.8 zeta.9 zeta.10

−
1

−
0.5

0
0.5

1

−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

r1

r 2

0.5

0.6

0.7

0.8

0.9

Prob(choose
 SNP3)

Supplementary Figure 4: Probability of correctly choosing a SNP 3 model, under a like-
lihood ratio setup. Probability of choosing a model under which SNP 3 is actually causal, when
SNP 3 is causal, P (ζ, r1, r2, r12), under the likelihood ratio setup for varying values of r1, r2, dif-
ferent effect sizes ζ and correlation r12 between SNPs 1 and 2 (side panels). P (ζ, r1, r2, r12, n) is
bounded below by 0.5 and is very close to 1 for all but very extreme values of r1 and r2 for effect
sizes ζ > 4.

and computing the probability of event (9) we get

P (ζ, r1, r2, r12) = 1− Φ(−1/2σW ) = 1− Φ

(
−1

2
|ζ|
√

1− r21 − r22 + 2r1r2r12

)
.

Hence, the probability of picking SNP 3 when it is causal is always greater than 0.5 and increasing

with the absolute value of effect size ζ (see Supplementary Figure 4).

Finally we calculate the probability of the BIC condition (6) in a similar fashion

P (ζ, r1, r2, r12, n) = 1− Φ

(
−1

2

(
σW +

ln(n)

σW

))
.

The probability is non-zero for some combinations of r1, r2, r12 and ζ, bounded below by 0.5

and increases in sample size n.
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Supplementary Note 3: Multinomial Fine-mapping (MFM) Model

Description

3.1 The ABF for a multinomial model can be expressed as a function of the

ABFs of the dichotomous logistic models

We suppose we observe N individuals, each individual i with response yi ∈ 0, 1, . . . ,m for m diseases

and a control group, represented by 0. We assume that each individual falls into exactly one class

- i.e. that no co-morbid individuals are in the sample - and that each individual has a vector

of covariate data xi. A “model” is defined by which elements of xi are used to fit a regression

model to the data, which we write by replacing xiby xMi for model M . Let φid = Pr(yi = d) and

nd =
∑

i I(yi = d). Then the multinomial regression likelihood is defined by

LM =

m∏
d=0

∏
i:yi=d

φid

where φid is estimated from equations

log

(
φid
φi0

)
= β′dx

M
i , i = 1, . . . , N, d = 1, . . . ,m

and
∑m

d=0 φid = 1. Thus,

φid =
exp(β′dx

M
i )

1 +
∑m

d=1 exp(β
′
dx

M
i )

The corresponding logistic models have likelihoods

Ld =
∏
i:yi=d

θid ×
∏
i:yi=0

(1− θid)

where θid = Pr(yi = d|yi ∈ {0, d}) and log
(

θid
1−θid

)
= γ′dx

M
i .

Begg and Gray[1] have shown that γ̂d = β̂d, d 6= 0, and that

θ̂id =
φ̂id

φ̂id + φ̂i0
.
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We wish to show, comparing a specific model to the null model, that the approximate Bayes’ factor

(ABF) from the multinomial model is approximately proportional to the product of ABF from the

logistic models. Accurate approximations to the Bayes’ factor comparing the likelihood of the data

under model M and the null model (and integrating over the values of the regression coefficients)

have been derived [2].

We use an approximation based on the Schwartz inequality which states that, writing BM0 for

the BF comparing model M with the null model, and with S defined as

S = log Pr(D|θ̂M ,M)− log Pr(D|θ̂0,M0)−
1

2
(kM − k0) log(n),

S − logBM0

logBM0
→ 0

as sample size n → ∞, where kj denotes the length of the parameter vector θj whose maximum

likelihood estimate is denoted θ̂j . Thus, S can be used as an ABF.

Recall we use the term “configuration” to describe a set of m models, M1,M2, . . .Mm such that

Mk is the model used to describe case group k. Under the multinomial model, the log(ABF) can

be written

BM =
m∑
d=1

∑
i:yi=d

β̂′dxi −
∑
i

log

(
1 +

m∑
d=1

exp(β̂′dxi)

)

−
m∑
d=1

∑
i:yi=d

β̂0d +
∑
i

log

(
1 +

m∑
d=1

exp(β̂0d)

)

− 1

2
(kC −m) log(N)

where kC =
∑

d kd is the total number of parameters in component models M1, . . . ,Mm, and β̂d

are the MLE of β under model Md relating to disease d and β̂0d are the MLE of β under the null
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(intercept only) model. Under the logistic model for disease d, the log(ABF) can be written

log(BL
d ) =

∑
i:yi=d

β̂′dxi −
∑

i:yi∈{0,d}

log(1 + eβ̂
′
dxi)

−
∑
i:yi=d

β̂0d −
∑

i:yi∈{0,d}

log(1 + eβ̂0d)

− 1

2
(kd − 1) log(nd + n0)

So that the difference between BM and
∑

dB
L
d is

D =
∑
i

[
log

(
1 +

m∑
d=1

exp(β̂0d)

)
− log

(
1 +

m∑
d=1

exp(β̂′dxi)

)]

+

m∑
d=1

∑
i:yi∈{0,d}

[
log
(

1 + eβ̂
′
dxi

)
− log

(
1 + eβ̂0d

)]
+

1

2

∑
d

(kd − 1) log(nd + n0)−
1

2
log(N)(kC −m)

Set

η =
1

2

∑
d

(kd − 1) log(nd + n0)−
1

2
log(N)

∑
d

(kd − 1)

=
1

2

∑
d

(kd − 1)log

(
nd + n0
N

) (11)

We show next that D − η ' 0.

Recall φid = Pr(yi = d), and note that under model M , log φ̂i0 = −log
(

1 +
∑m

d=1 exp(β̂′dxi)
)

.

Note also that β̂0d = log(nd/n0) so that

− log

(
1 +

m∑
d=1

exp(β̂0d)

)
= log(n0/N), and

− log
(

1 + exp(β̂0d)
)

= log (n0/(n0 + nd)) .
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Thus

D − η =−N log(n0/N) +
∑
i

log φ̂i0 −
m∑
d=1

∑
i:yi∈{0,d}

log
φ̂i0

φ̂i0 + φ̂id
+

m∑
d=1

(n0 + nd) log
n0

n0 + nd

Now, note that 1
N

∑
i φ̂i0 = n0/N . We consider

∑
i log(φ̂i0) as a sum of Taylor series expansions

of log φ̂i0 about n0
N :

∑
i

log φ̂i0 '
∑
i

(
log
(n0
N

)
+
N

n0

)(
φ̂i0 −

n0
N

)
+O

((
φ̂i0 −

n0
N

)2)
' N log

(n0
N

)
+
N

n0

∑
i

(
φ̂i0 −

n0
N

)
= N log

(n0
N

)
+
N

n0
(n0 − n0)

= N log
(n0
N

)

neglecting terms in O

((
φ̂i0 − n0

N

)2)
and smaller.

Similarly,

∑
i:yi∈{0,d}

log
φ̂i0

φ̂i0 + φ̂id
=

∑
i:yi∈{0,d}

log θ̂i0 ' (n0 + nd) log

(
n0

n0 + nd

)

Therefore,

D − η ' −N log(n0/N) +N log(n0/N)−
m∑
d=1

(n0 + nd) log

(
n0

n0 + nd

)
+

m∑
d=1

(n0 + nd) log

(
n0

n0 + nd

)
= 0

so that

BM ' η +
∑
d

BL
d (12)

To confirm the accuracy of this approximation defined by equations (11)– (12), we simulated

genetic data for varying numbers of cases (two diseases) and controls and calculated logistic ABFs

for all possible models using the R package BMA. From these, we calculated the summed log
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ABF for all possible configurations. For comparison we calculated the log ABF for the comparitor

multinomial model directly using the R package mlogitBMA. Finally, we regressed the multinomial

log ABF on the summed logistic log ABFs and stored the estimated intercept slope and R2 of this

final linear regresion model. For each dataset, we also calculated the univariate p values for each

SNP and disease, and stored the minimum p value for each disease. We repeated this procedure

15,000 times, and found that when the minimum p value was below 10−7 that the multinomial

and summed logistic log ABFs were linearly related (R2 ' 1) with a slope of 1, indicating the the

multinomial ABF could be expressed as approximately proportional to the product of the logistic

ABFs (Supplementary Figure 5). For larger p values, the approximation was less exact, with the

average slope of the regression approaching 1.02 for datasets with minimum p values around 0.01,

but R2 remaining very high, at > 0.9996 for all simulations. Given that the accepted threshold

for genomewide significance is typically < 10−8, we concluded that this approximation was valid in

the range of datasets for which fine mapping might be useful.
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Supplementary Figure 5: Comparison of log ABF for a multinomial model with the sum
of log ABF for component logistic models. We simulated case-control and genetic data for
varying sample sizes, effect sizes, and number of causal variants. We regressed the multinomial log
ABF on the sum of logistic log ABFs and found the approximation was valid (R2 > 0.9996 and
slope' 1) when the minimum p value in both datasets (x-axis) was < 10−8. Points represent the
individual estimates of slope (left column) and R2 (right column). Rows are stratified according to
the proportion of cases of disease 1 in the simulated sample.
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3.2 Memory-efficient calculation of the marginal posteriors for each disease

Let us consider possible models Mi, i = 1, . . . , n. Each model i has a prior pi, and a Bayes factor

for disease 1 and 2, bi and di respectively under a logistic model with ki parameters. We show

above that the joint approximate Bayes factor for a configuration

Ci,j = Mi for disease 1,Mj for disease 2

is a function of the ABFs from the dichotomous logistic models

Bij ∝ b′id′j ,

where

b′i = bi × exp(η1(Mi)),

d′j = dj × exp(η2(Mj))

and

ηl(Mi) = exp

(
(ki − 1)× 1

2
log

(
nl + n0
N

))
, l = 1, 2

Thus, the posterior for configuration Ci,j is

PPij ∝ Pr(Ci,j)b′id′j .

We incorporate our prior belief on shared causal variants between diseases by upweighting

configurations corresponding to such sharing compared to those that don’t. We set

Pr(Ci,j) = pipjκ
Mi∩Mj 6=∅τij

17



κ is the upweighting factor, and τij is a normalisation factor, chosen to ensure that

∑
i:|Mi|=m,j:|Mj |=l

pipj =
∑

i:|Mi|=m,j:|Mj |=l

pipjκ
Mi∩Mj 6=∅τij (13)

ie, that the prior belief for a configuration corresponding to given model sizes doesn’t vary with κ.

The equality in (13) implies

(
n

m

)(
n

l

)
π(m)π(l) = τijπ(m)π(l)

[(
n

m

)(
n−m
l

)
+ κ

(
n

m

)((
n

l

)
−
(
n−m
l

))]
τij =

(
n
l

)(
n−m
l

)
+ κ

[(
n
l

)
−
(
n−m
l

)] (14)

for models Mi and Mj with sizes m and l respectively.

Considering the form of the marginal model posterior probabilities for each disease helps un-

derstand how κ > 1 allows information from disease 2 to be used in our inference for disease

1.

The posterior probability of M1 for disease 1 is proportional to a sum of the posterior proba-

bilities of all configurations C1,j , j = 1, . . . , n. Let Ii,j be an indicator function, taking the value 1

if Mi ∩Mj 6= ∅ and 0 otherwise. Then

Pr(Mi for disease 1|Data) ∝
∑
j

pipjb
′
id
′
j × κIi,jτij

= pib
′
i

 ∑
j:Ii,j=0

τijpjd
′
j + κ

∑
j:Ii,j=i

τijpjd
′
j


= pib

′
i

∑
j

τijpjd
′
j + (κ− 1)

∑
j:Ii,j=i

τijpjd
′
j


= pib

′
i

(
1 + (κ− 1)

∑
j:Ii,j=1 τijpjd

′
j∑

j τijpjd
′
j

)

Noting the similarity to

Pr(Mi for disease 1|Data for disease 1 only) ∝ bipi

18



we can see that information from disease 2 enters by modifying the prior for model 1 according the

posterior support for disease 2 for models that contain any overlap with M1.

With n > 2 diseases, each disease may share causal variants with n − 1 other diseases. We

have more choices now, in terms of how to formulate the joint model - do we upweight further

configurations that display sharing between more than 2 diseases? Given the interpretation above

of the marginal posterior for one disease, we chose to focus on pairwise sharing of each of n − 1

other diseases with a single disease of interest. This implies that, if our focus is on disease 1, we

consider a prior of the form

π(Cijk) ∝ pipjpkκI(Mi∩Mj 6=∅)κI(Mi∩Mk 6=∅)τijτik

(and similar for four or more diseases). This corresponds to a marginal posterior for disease 1

(whose models are indexed by i)

Pr(Mi for disease 1|Data) ∝ pib′i

(
1 + (κ− 1)

∑
j:Ii,j=1 τijpjd

′
j∑

j τijpjd
′
j

)(
1 + (κ− 1)

∑
k:Ii,k=1 τikpkd

′
k∑

k τikpkd
′
k

)

This formulation also enables memory efficient calculation of the individual disease marginal

posteriors, by stepping through the sums over all configurations, storing only the contents of each

large bracket on the right hand side.

As before, so that the prior on any given model size is independent of κ, we have

∑
i:|Mi|=m,j:|Mj |=l,k:|Mk|=o

pipjpk =
∑

i:|Mi|=m,j:|Mj |=l,k:|Mk|=o

pipjpkκ
Mi∩Mj 6=∅τijκ

Mi∩Mk 6=∅τik

which leads to

τijτik =

(
n
o

)(
n
l

)(
n−m
o

)(
n−m
l

)
+ κ

[((
n
l

)
−
(
n−m
l

)) (
n−m
o

)
+
((
n
o

)
−
(
n−m
o

)) (
n−m
l

)]
+ κ2

((
n
o

)
−
(
n−m
o

)) ((
n
l

)
−
(
n−m
l

))
=

(
n
l

)(
n
o

)(
κ
(
n
l

)
− κ

(
n−m
l

)
+
(
n−m
l

)) (
κ
(
n
o

)
− κ

(
n−m
o

)
+
(
n−m
o

))
for models Mi, Mj , Mk with sizes m, l, o respectively, which is solved for τij , τik as given by
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equation (14).

3.3 Choice of κ

It may be hard to directly elicit values for the prior parameter κ, that upweights configurations

with pairwise sharing of variants between diseases vs configurations without sharing. We set out

here how a value for κ may be derived from a quantity that may be more easily elicited - the

probability that a pair of diseases share any causal variant (with either concordant or discordant

direction of effect) within a region that they both show association, which we denote Pκ.

Recall the prior for a configuration specified by model Mi for disease 1 and model Mj for disease

2 is

Pr(Ci,j) ∝ pipjκI(Mi∩Mj 6=∅)τij .

where

τij =

(
n
nj

)[(
n
nj

)
−
(
n−ni
nj

)]
κ+

(
n−ni
nj

) =

(
n
ni

)[(
n
ni

)
−
(
n−nj
ni

)]
κ+

(
n−nj
ni

)
Note that, given n SNPs in a region, and using ni, nj to denote the sizes of models Mi, Mj

respectively, then the number of models that can be selected with size ni is
(
n
ni

)
, the number of

configurations with model sizes ni, nj is
(
n
ni

)(
n
nj

)
, and the number of these that contain no shared

causal variants is
(
n
ni

)
[
(
n−ni
nj

)
(equivalently, the number which contain at least one shared causal

variant is
(
n
ni

)
[
(
n
nj

)
−
(
n−ni
nj

)
]). The prior probability of no sharing in causal variant models is

P0 =
∑
m

∑
l

(
n

m

)(
n−m
l

)
× π(m)(

n
m

) π(l)(
n
l

) × (
n
l

)[(
n
l

)
−
(
n−m
l

)]
κ+

(
n−m
l

)
=
∑
m

∑
l

π(m)π(l)[(
n
l

)
/
(
n−l
m

)
− 1
]
κ+ 1

Then, assuming our prior probability that two diseases share no causal variants in the region

of interest is F0, κ may be found by numerically solving the equation

F0

1− F0
=

P0

1− P0
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which can be set to any elicited value, and numerically solved for κ.

For d > 2 diseases, P0 becomes

P0(d) =
∑
m

π(m)

(∑
l

(
n−m
l

)
π(l)[(

n
l

)
−
(
n−m
l

)]
κ+

(
n−m
l

))d−1

but we have to be careful about specifying the prior probability for no pairwise sharing. If the other

diseases were totally independent, a natural prior value would be F d−10 . If the other diseases were

totally dependent, then the prior would remain at F0. In the absence of strong prior knowledge

about this, we suggest that F
√
d−1

0 is a sensible compromise, but that both extreme values F0 and

F d−10 should also be explored.
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Supplementary Figures
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Supplementary Figure 6: Histogram of BIC(Stepwise Search) - BIC(Stochastic Search) for the best
stochastic and stepwise search models from each region-disease analysis. Stochastic search tends to
have a BIC that is the same or smaller as that from stepwise search, indicating a fit that is at least as good
or better than stepwise search.The BIC is calculated using the best SNP model from stochastic search, and for
two regions, the null model is preferred over each individual SNP model, coinciding with the two instances of
stepwise appearing to select a better-fitting model than stochastic search. However, in these two instances, the
best non-null model selected by stochastic search agrees with that of stepwise search.
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Supplementary Figure 7: Stepwise regression behaviour when there are two causal SNPs. Each plot a-t is
a 2x2 grid, where each point represents a single two SNP causal model, specified by effects (log odds ratio) for
the causal SNPs on the X and Y axes. First two columns: “Sunbeam plots” show which SNP is expected to be
selected first in a step wise search at each position. Last two columns: “Probability plots” show the probability
that the tag SNP was first selected in a stepwise search. Columns 1, 3: Sample sizes from relevant disease dataset;
Column 2,4: sample size of 50000 cases and 50000 controls. Two sample sizes are shown so the dependence on
small sample size can be evaluated. The black dot shows where the observed disease data lie.
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Supplementary Figure 8: Distribution of the number of associated diseases per region. Frequency of the
number of associated diseases per region, partitioned by whether signals are shared between diseases, for UK
samples (left) and international samples (right). We consider a signal to be shared when there exists a SNP group
with MPPI > 0.5 for more than one disease.
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Supplementary Figure 9: Haplotype analysis of SNPs selected by stepwise search and GUESSFM for IMD
in region 10p-6030000-6220000. Representative SNPs from each SNP group is shown. Each row represents
one SNP, with possible alleles colour coded according to major or minor. Each column is a haplotype - a specific
combination of alleles across all SNPs - with frequency in UK controls and effect on disease risk (log OR + 95CI).
MAF is shown as a percentage on a log scale to allow frequencies of rarer haplotypes to be distinguished.



Supplementary Tables 
 
 
 
 

Country\ 
Phenotype 

Autoimmune 
Thyroid 
Disease 
(ATD) 

Celiac 
Disease 
(CEL/iCEL) 

Juvenile 
Idiopathic 
Arthritis 
(JIA) 

Multiple 
Sclerosis 
(MS) 

Rheumatoid 
Arthritis 
(RA/iRA) 

Type 1 
Diabetes 
(T1D) 

CONTROL 

Spain (ES) 0 0 0 0 807 0 399 
IndiaPunjab 0 229 0 0 0 0 391 
Italy 0 1374 0 0 0 0 1255 
Netherlands 0 1104 0 0 648 0 2007 
Poland 0 505 0 0 0 0 533 
Southeastern  
Europe (SEE) 

0 0 0 0 2762 0 1940 

Southern  
Europe (SEU) 

0 0 0 0 852 0 963 

Spain-CEGEG 0 545 0 0 0 0 308 
SpainMadrid 0 556 0 0 0 0 320 
UK 2772 7728 1214 4461 3870 6681 12747 
US 0 0 0 0 2536 0 2134 
Total 2772 12041 1214 4461 11475 6681 22997 

 
Supplementary Table 1 : Immune-mediated disease data sample sizes by country and 
phenotype. We ran analyses on UK-only (ATD, CEL, JIA, MS, RA, T1D) and international (all 
countries, iCEL, iRA) samples.  



 

Region Disease Stepwise Stochastic 
GPP 

Stochastic Stochastic 
GPP 

1q-172650685-172940450 CEL A 0.0939 A+C 0.796 
iCEL A 5.82E-05 A+D 0.858 

1q-206802440-207032751 T1D C 0.207 C+B 0.511 
2q-191873553-192007734 iRA G 0.1 G+C 0.521 
2q-204446380-204816382 iCEL I 0.14 I+K 0.351 
3p-45929800-46650993 iCEL A+G 0.0544 A+B+G 0.598 
3q-159586299-159754507 iCEL A+D 0.0766 A+D+E 0.863 
4q-122973062-123565302 iCEL G 0.141 G+E 0.729 
6q-127952182-128340790 iCEL C 0.105 C+A 0.705 
6q-137882875-138275085 iCEL A+C 0.376 A+C+H 0.402 

iRA C 0.48 C+F 0.484 
6q-159322326-159541830 CEL C 0.348 C+D 0.457 
10p-6030000-6220000 T1D A+C+E 1.33E-08 A+C+E+F 0.622 
13q-100036418-100108807 iCEL B 0.273 B+D 0.646 
14q-69168821-69318062 JIA D 0.148 C+D 0.767 
18p-12738413-12924117 T1D C 0.0175 C+E 0.895 
19p-10396336-10628468 T1D C 0.0085 A+C 0.892 
21q-43810084-43887145 T1D C 0.0364 C+D 0.767 

 
Supplementary Table 2: Region-disease combinations where the best stepwise model is 
nested within the best stochastic search model. The best stepwise model is listed according to 
the SNP group(s) that the SNP(s) belong to. Highest group posterior probability (GPP) was used to 
select the best model for stochastic search and the stochastic GPP is also given for the stepwise 
model.  



 (a) Stochastic Search, J=0.8 
Model/N 1000 2000 3000 4000 5000 
A 0.005 2.11E-03 4.09E-04 4.18E-06 0 
C 0.015 0.051 0.017 1.46E-03 1.31E-04 
J 0.173 0.686 0.950 0.990 0.996 
A+C 1.19E-04 7.59E-05 4.64E-04 6.62E-04 0 
A+C+J 0 0 0 0 0 
null 0.756 0.244 0.022 1.42E-03 0 
other 0.051 0.017 9.75E-03 6.29E-03 3.92E-03 

 
(b) Step-wise Regression, J=0.8 
Model/N 1000 2000 3000 4000 5000 
A 0 0 0 0 0 
C 0 0 0.01 0 0 
J 0.01 0.46 0.91 0.99 1 
A+C 0 0 0 0 0 
A+C+J 0 0 0 0 0 
null 0.98 0.54 0.08 0.01 0 
other 0.01 0 0 0 0 

 
Supplementary Table 3: Case-control simulations with one causal variant, J, in IL2RA.  
(a) Model mean posterior probability (GUESSFM; stochastic search) and (b) Mean model selection 
probability (stepwise regression) for simulated data having causal variant J with OR=0.8. Case-
control data were simulated with the characteristics of the IL2RA region, and there were 100 
replications. Sample sizes were N cases, N controls for N=1000 to 5000 and are listed by column. 

 
 
  



 
a) Stochastic Search, A=0.81,C=0.74 

 
 
 
 
 
 
 
 

(b) Stepwise Regression, A=0.81,C=0.74 
 
 
 
 
 
 
 
 

 
 
c) Stochastic Search, A=0.74,C=0.81 
Model/N 1000 2000 3000 4000 5000 
null 0.523 0.115 0.020 3.25E-06 0 
A+C 0.056 0.363 0.550 0.868 0.898 
C 0.125 0.179 0.203 0.056 1.16E-02 
J 0.150 0.259 0.106 0.052 0.024 
other 0.147 8.37E-02 0.120 2.43E-02 6.65E-02 

d) Stepwise Regression, A=0.74,C=0.81 
Model/N 1000 2000 3000 4000 5000 
null 0.99 0.77 0.45 0.18 0.04 
A 0 0.02 0 0.07 0.01 
A+C 0 0 0 0.17 0.19 
C 0 0.05 0.21 0.3 0.19 
J 0.01 0.16 0.28 0.26 0.55 
other 0 0 0.06 0.02 0.02 

 
Supplementary Table 4: Case-control simulations with two causal variant, A+C, in IL2RA. 
(a,c) Model mean posterior probability (GUESSFM; stochastic search) and (b,d) Mean model 
selection probability (stepwise regression) for simulated data having causal variants A + C, odds 
ratios A:0.81, C:0.74 (a,b), A:0.74, C:0.81 (c,d). Case-control data were simulated with the 
characteristics of the IL2RA region, and there were 100 replications. Sample sizes were N cases, 
N controls for N=1000 to 5000 and are listed by column. 

  

Model/N 1000 2000 3000 4000 5000 
Null 0.252 0 0 0 0 
A+C 0.049 0.175 0.440 0.539 0.661 
C 0.490 0.701 0.510 0.430 0.258 
J 0.106 0.081 0.010 7.57E-03 0.011 
other 0.102 0.042 0.040 0.024 0.071 

Model/N 1000 2000 3000 4000 5000 
null 0.86 0.21 0.02 0 0 
A+C 0 0 0.02 0.04 0.18 
C 0.1 0.68 0.89 0.9 0.76 
J 0.04 0.1 0.07 0.06 0.06 
other 0 0.01 0 0 0 



a) Stochastic Search, G=1.25 
Model/N 1000 2000 3000 4000 5000 
G 0.329 0.824 0.918 0.959 0.988 
H 0.094 0.093 0.058 0.020 1.37E-03 
null 0.553 0.067 2.34E-03 3.55E-03 1.14E-06 

 
(b) Stepwise Regression, G=1.25 
Model/N 1000 2000 3000 4000 5000 
G 0.06 0.64 0.93 0.97 1 
null 0.94 0.33 0 0 0 

 
Supplementary Table 5: Case-control simulations with one causal variant, G, in CTLA4.  
(a) Model mean posterior probability (GUESSFM; stochastic search) and (b) Mean model selection 
probability (stepwise regression) for simulated data having causal variant G with OR=1.25. Case-
control data were simulated with the characteristics of the CTLA4 region, and there were 100 
replications. Sample sizes were N cases, N controls for N=1000 to 5000 and are listed by column.  



 
a) Stochastic search, E=1.24, H=1.19 
Model/N 1000 2000 3000 4000 5000 6000 7000 
E+H 4.74E-04 0.047 0.109 0.322 0.473 0.726 0.830 
G 0.131 0.310 0.494 0.442 0.392 0.204 0.128 
H 0.056 0.139 0.116 0.143 0.085 0.044 9.04E-03 
null 0.790 0.479 0.235 0.057 0.014 2.27E-03 0 
other 0.023 0.026 0.046 0.036 0.037 0.024 0.033 

b) Stepwise regression, E=1.24, H=1.19 
Model/N 1000 2000 3000 4000 5000 6000 7000 
E 0 0 0 0.07 0.08 0 0.1 
G 0 0.08 0.33 0.61 0.68 0.71 0.76 
H 0 0 0 0 0.13 0.21 0.14 
null 1 0.91 0.64 0.27 0.11 0 0 
other 0 0.01 0.03 0.05 0 0.08 0 

 
 
c) Stochastic search, E=1.19, H=1.24 
Model/N 1000 2000 3000 4000 5000 6000 7000 
E+H 2.18E-03 7.94E-03 0.063 0.108 0.201 0.385 0.506 
G 0.170 0.316 0.309 0.460 0.328 0.221 0.214 
H 0.159 0.404 0.571 0.416 0.450 0.372 0.253 
null 0.654 0.246 0.041 3.03E-03 0 0 0 
other 0.015 0.026 0.016 0.013 0.020 0.022 0.027 

d) Stepwise regression, E=1.19, H=1.24 
Model/N 1000 2000 3000 4000 5000 6000 7000 
G 0.03 0.11 0.28 0.53 0.46 0.35 0.38 
H 0 0.08 0.48 0.44 0.54 0.65 0.62 
null 0.97 0.81 0.24 0 0 0 0 
other 0 0 0 0.03 0 0 0 

 
Supplementary Table 6: Case-control simulations with two causal variants, E+H, in CTLA4. 
(a,c) Model mean posterior probability (GUESSFM; stochastic search) and (b,d) Mean model 
selection probability (stepwise regression) for simulated data having causal variants E + H with 
odds ratios E:1.24, H:1.19 (a,b) and E:1.19, H:1.24 (c,d). Case-control data were simulated with 
the characteristics of the CTLA4 region, and there were 100 replications. Sample sizes were N 
cases, N controls for N=1000 to 7000 and are listed by column. 

 
  



 
a) Stochastic search, B=0.8 
Model/N 1000 2000 3000 4000 5000 
A 0.011 0.015 0.024 3.66E-03 1.39E-03 
B 0.047 0.420 0.680 0.875 0.979 
D 0.029 0.056 0.050 0.03351238 0.012 
A+B 2.56E-05 2.95E-04 6.91E-04 5.72E-04 7.87E-04 
A+D 2.36E-05 6.22E-04 9.27E-04 3.07E-03 5.45E-04 
B+D 3.14E-05 3.21E-04 6.02E-04 2.98E-04 1.76E-03 
A+B+D 0 0 0 0 0 
null 0.903 0.486 0.235 0.068 2.74E-03 
other 9.64E-03 0.022 8.83E-03 0.017 2.16E-03 

 
b) Stepwise regression, B=0.8 
Model/N 1000 2000 3000 4000 5000 
A 0 0 0 0 0 
B 0.01 0.23 0.48 0.88 1 
D 0 0.01 0.03 0.02 0 
A+B 0 0 0 0 0 
A+D 0 0 0 0 0 
B+D 0 0 0 0 0 
A+B+D 0 0 0 0 0 
null 0.99 0.76 0.49 0.1 0 
other 0 0 0 0 0 

 
Supplementary Table 7: Case-control simulations with a single causal variant B in IL2RA. 
(a) Model mean posterior probability (GUESSFM; stochastic search) and (b) Mean model selection 
probability (stepwise regression) for simulated data having causal variant B with OR=0.8. Data 
were simulated with the characteristics of the IL2RA region and there were 100 replications. 
Sample sizes were N cases, N controls for N=1000 to 5000 and are listed by column. 

 
  



a) Stochastic search, A=0.84, D=0.77 
Model\N 1000 2000 3000 4000 5000 6000 7000 
null 0.622 0.168 0.110 0.062 0.072 0.031 0.024 
A 6.43E-04 2.90E-03 7.50E-03 0.017 0.020 0.043 0.054 
A+D 2.87E-03 0.043 0.072 0.178 0.265 0.422 0.492 
B 0.103 0.209 0.183 0.197 0.141 0.174 0.205 
D 0.243 0.537 0.579 0.472 0.476 0.267 0.160 
other 0.028 0.041 0.049 0.074 0.026 0.062 0.065 

b) Stepwise regression, A=0.84, D=0.77 
Model\N 1000 2000 3000 4000 5000 6000 7000 
null 1 0.700 0.360 0.150 0.120 0.080 0.020 
B 0 0.130 0.190 0.370 0.280 0.380 0.390 
D 0 0.170 0.440 0.480 0.600 0.530 0.570 
other 0 0 0.010 0 0 0.010 0.020 

 
c) Stochastic search, A=0.81, D=0.8 
Model\N 1000 2000 3000 4000 5000 6000 7000 
null 0.542 0.317 0.090 0.041 0.037 0.024 0.009 
A 0.011 8.44E-03 0.029 0.018 0.025 0.057 0.063 
A+D 6.64E-03 0.078 0.127 0.226 0.243 0.442 0.523 
B 0.159 0.313 0.449 0.503 0.421 0.315 0.327 
D 0.158 0.220 0.227 0.195 0.220 0.154 0.057 
other 0.123 0.064 0.079 0.017 0.054 8.94E-03 0.022 

d) Stepwise regression, A=0.81, D=0.8 
Model\N 1000 2000 3000 4000 5000 6000 7000 
null 1 0.95 0.61 0.2 0.1 0.1 0.06 
B 0 0.04 0.3 0.65 0.62 0.62 0.74 
D 0 0 0.06 0.15 0.27 0.28 0.19 
other 0 0.01 0.03 0 0.01 0 0.01 

 
e) Stochastic search, A=0.77, D=0.84 
Model\N 1000 2000 3000 4000 5000 6000 7000 
null 0.849 0.330 0.135 0.021 0.014 6.30E-04 3.54E-03 
A 0.034 0.138 0.075 0.103 0.067 0.080 0.049 
A+D 1.08E-03 0.031 0.204 0.326 0.342 0.348 0.522 
B 0.074 0.403 0.501 0.509 0.540 0.543 0.370 
D 8.25E-03 0.051 0.043 0.017 0.011 7.31E-03 0.027 
other 0.034 0.047 0.043 0.024 0.025 0.021 0.028 

f) Stepwise regression, A=0.77, D=0.84 
Model\N 1000 2000 3000 4000 5000 6000 7000 
null 1 0.97 0.77 0.46 0.2 0.1 0.01 
B 0 0.03 0.19 0.46 0.74 0.82 0.92 
other 0 0 0.04 0.08 0.06 0.08 0.07 

Supplementary Table 8: Case-control simulations with two causal variants, A+D, in IL2RA. 
(a,c,e) Model mean posterior probability (GUESSFM; stochastic search) and (b,d,f) Mean model 
selection probability (stepwise regression) for simulated data having causal variants A and D with 
odds ratios A:0.84, D:0.77 (a,b), A:0.81, D:0.8 (c,d) and A:0.77, D:0.84 (e,f). Data were simulated 
with the characteristics of the IL2RA region and there were 100 replications. Sample sizes were N 
cases, N controls for N=1000 to 7000 and are listed by column. 
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